
Exercises — 1

Implementing the FM technique
by Simon J. Murphy

1. Introduction

As you saw in the lectures, the frequency modulation (FM) technique is one way of determining the
orbital parameters of a binary system. In this Exercise, you will learn to implement the FM technique
using a Kepler binary system containing a δ Sct pulsator. The FM technique can be readily applied to
binaries of a wide range of periods and with companions ranging in mass from planets to black holes.

The FM technique works by measuring the properties of sidelobes to Doppler-shifted pulsation frequen-
cies. While it is relatively easy to measure an orbital period, obtaining other orbital parameters is quite
difficult. Furthermore, there is no existing software to do it for you. In this Exercise, you will learn how
to implement FM for yourself in a Jupyter Notebook. It will then be possible to use code that you write
and apply it to other systems. Today, we’ll work with KIC 9594022.

Warning: this Exercise is extremely challenging! You will be using python to analyse this binary sys-
tem. If you are not very familiar with python, please team up with somebody who is. You will struggle
otherwise. To make the Exercise easier, some of the harder tasks have been done for you and you will
be able to copy-paste the necessary functions from this document. You only have 90 minutes, so if you
are struggling, please ask for help. The instructions here are quite explicit to try to guide you through
the process.

Why does this Exercise rely so heavily on python? Python is the most widely-used computer language
in astronomy. Much of modern astronomy is conducted in python, and an understanding of python will
open a lot of doors for you. There are excellent libraries to use, as well as a lot of open source software.
As we saw in the data retrieval exercises, many official tools for obtaining and analysing lightcurves are
written in python.

2. Learning Objectives

At the end of this tutorial you should be able to

• Identify frequency multiplets in the Fourier transform using Period04.

• Use a python function to fit pulsation frequencies to a data set (i.e. a lightcurve).

• Calculate orbital parameters for binary systems.

• Propagate uncertainty in the orbital parameters.

3. Plan

You should work in pairs or groups of three for these exercises, even if you each work on a Jupyter
Notebook on your own computer. Don’t worry if you don’t finish the whole Exercise. The instructions
are set up so that you can continue at a later time, if you wish.

You should begin by starting a new Jupyter Notebook, giving it a name, then following the instructions
below. You’ll also need to open Period04. Locate the light curve file, kic9594022 lc.txt, in the online
directory.

1



Exercises — 1 The FM technique

4. Finding the orbital sidelobes

4.1 Importing and inspecting the data

Your first task is to import the light curve to Period04. You should check the light curve (Display graph)
to make sure it is okay. Do any outliers need removing? You’ll notice this is a full four years of Kepler
data in long-cadence mode. That’s a lot of data!

Calculate a Fourier transform of the light curve. You’ll need to think carefully about the frequency range
– it will need to be high enough to help you distinguish Nyquist aliases. Also think a little about the
step rate of the Fourier transform. By default, ‘high’ oversamples by a factor of 20. This is much more
than you need. Using a lower step rate will make the computation quicker.

Decide which are the strongest real peaks in the Fourier transform. Remember that real peaks will have
higher amplitudes than their Nyquist counterparts. You can add them by right-clicking and choosing
Add peak to frequency list, but be sure you get the peak and not another one nearby – use zoom carefully.
You do not need to also select the Nyquist aliases of each real peak. If you select the real peak, and
calculate a fit of this frequency to the light curve, its Nyquist alias will disappear. But beware: if you
choose the Nyquist alias, the real peak will disappear! If you select a Nyquist alias now by mistake, then
later in the Exercise you’ll end up rediscovering Kepler ’s orbit around the Sun – still a fun thing to do,
but not our main goal today. Extract just a few of the strongest peaks for now.

Using the Fit tab, select the peaks you have extracted (using the check-boxes) and click Calculate. This
determines a linear least-squares fit of the selected frequencies to the light curve. After this, click Im-
prove all, which will run a non-linear least-squares fit of these frequencies to improve the frequencies,
amplitudes and phases.

Now return to the Fourier tab, change the Calculations based on: from Original data to Residuals at
original, and recalculate the Fourier transform over the same frequency range. Notice that the real peaks
and their Nyquist aliases are now gone.

4.2 Extracting the orbital sidelobes

This is a known binary system, so each of the pulsation frequencies is modulated by the orbital frequency
– the pulsating star is like an FM radio! In the Fourier domain, this causes each pulsation frequency
to be split into a multiplet. We have already identified and fitted the pulsation frequency, which is the
central component of the multiplet; now we are going to identify the sidelobes of that multiplet.

Calculate the Fourier residuals in a narrow range, say ±0.03 d−1, around the strongest peak. You should
now see the frequency multiplet, minus the central component which you’ve already fitted. Right click
on the first sidelobes of this peak. They should be the stronger and more central peaks that remain. Go
to the Fit tab, select these new peaks, and Calculate and Improve all on all peaks that you’ve extracted
so far.

By this stage, you should have extracted the strongest peak (we’ll call it f1) and its first sidelobes (let’s
call them f1p1 and f1m1, where subscripts p and m denote ‘plus’ and ‘minus’, representing f1 + 1 ∗ forb
and f1 − 1 ∗ forb, respectively). If you are not sure that you have now reached this stage, ask
for help! You may also have extracted a few additional pulsation frequencies, but don’t worry about
the sidelobes of those other frequencies – we are going to focus on f1 and its sidelobes for now.

5. Analysing the orbit with python

While it is important to learn to use python to analyse astronomical data sets, your ability to use python
should not be a barrier to completing this Exercise. Every task here will have hints and/or solutions
available that you can refer to if you are stuck. Google is your friend! E.g. if you are not sure what the
syntax is for np.loadtxt (the program for reading a .txt file using the numpy library), you can quickly
find the answer on Google.

2



Exercises — 1 The FM technique

5.1 Getting started

Begin by importing numpy and importing optimize from the scipy package. The light curve file has
only two columns: time (d) and brightness (mag). Read this in so that you have a time array and a flux
array [hint-5,1]. You will also need the frequencies f1, f1p1 and f1m1. Copy those from Period04 and
assign them to variables. It would be wise to collect them in an array, or list. [solution-5,1]

5.2 Preparing to optimize

Soon we are going to optimize a fit of f1, f1p1 and f1m1 to the Kepler light curve, because we need
to know the best-fitting frequencies, amplitudes and phases of those, and we need the uncertainties on
those quantities. The uncertainties are a necessary step in determining the uncertainties on the binary
orbit, later.

Our time array has a large, non-zero mean. It’s bad practice to optimize on an array of times with such
a large mean, because any uncertainties in frequency will accumulate. (You might like to think about
why this is the case.) Subtract the mean time, so that the times array is centered on zero. [hint-5,2]
[solution-5,2]

5.3 A function that optimizes a multi-sine-wave fit

The pulsational variability in the light curve can be expressed as a sum of N sinusoids, i.e.

∆L =

N∑
i=1

Ai sin(2πfit+ φi), (1)

where L is the stellar luminosity, Ai and φi are the pulsation amplitude and phase of the frequency fi,
and t is the independent variable – the times of observation.

Writing your own code to use the scipy optimizer is quite difficult. Unless you really want a challenge, I
suggest that you copy the two functions-5,3 into your notebooks and run them both. Do try to understand
what these functions are doing. Now, all you have to do to get the values of your parameters and the
uncertainties is to run this line:

a_out, freq_out, phi_out, a_err, freq_err, phi_err = optimizer(time,mag,freqs)

where time is your array of times, mag is the equally-sized array of magnitudes, and freqs is your
frequency array. This line collects the optimised amplitudes, frequencies, phases, amplitude errors,
frequency errors and phase errors for your input frequency array, and puts them in equally sized arrays.
If your input array was

freqs = [f1, f1p1, f1m1]

then your aout array will be

a_out = [a1, a1p1, a1m1]

and so on. The order you used in your freqs array that you then sent to the optimizer function will
be the same order of frequencies and corresponding amplitudes and phases that you get in the outputs.
It is not important which order you choose, but you will need to be consistent. You can see the values
by typing

a_out

on its own in a cell, and you can access an individual element by its index, e.g. the amplitude of the
pulsation frequency is accessed by typing

a_out[0]

3



Exercises — 1 The FM technique

For ease of access of these variables later, you may like to now reassign your variables so that you don’t
get confused with array indexing. E.g.

f1, f1p1, f1m1 = freq_out

...

a1_err, a1p1_err, a1m1_err = a_err

But make sure that you refer to your ordering of the freqs array. You can ignore the phases and phase
errors for now – we won’t need them in this Exercise. [solution-5,3]

5.4 Calculating the orbital period

We saw in the lecture that the sidelobes should be equally split from the central frequency, and this
splitting is equal to the orbital frequency. That is,

νorb = f1 − f1m1 = f1p1 − f1 (2)

Check that your frequency splittings are equal (at least to the first two significant figures), and take the
average splitting as νorb. The orbital period, Porb, is the reciprocal of νorb. [solution-5,4a]

You can calculate the uncertainty on the orbital period. Since we have used the average splitting as our
orbital frequency, the uncertainties on the individual frequencies will need to be combined in quadrature.
The orbital period has the same fractional uncertainty as the orbital frequency. That is now calculable,
using eq 3. [solution-5,4b]

σ(Porb)

Porb
=
σ(νorb)

νorb
. (3)

If we wanted to be sure that this is really a binary system, we could check several pulsation modes and
make sure that they all give the same orbital frequency, since every pulsation mode should respond to
the orbit in the same way. For now, let us look at extracting some of the other orbital parameters using
only the f1 multiplet.

5.5 Estimate the eccentricity

Take a break from python and go back to Period04. We need to measure the amplitudes of the second
sidelobes to calculate the eccentricity. Don’t worry, we aren’t going to import them back into python

and run our optimizer again, we’re going to cheat and use the values measured in Period04.1

Using the same zoomed-in frequency interval around f1 that you used before, locate the second sidelobes.
You have an expectation of the frequency of these already, so you can use that to confirm that you get
the right peaks. Add them to the frequency list, click Calculate and then Improve all. Assign these
values as variables in your Jupyter Notebook.

The eccentricity is calculated from the amplitudes of the sidelobes as follows:

e ' 2
A1p2 +A1m2

A1p1 +A1m1
(4)

This approximation to the eccentricity is very good, unless the e ∼ 1.0. Calculate the eccentricity
using eq 4 now. In this case, we see the eccentricity is not too large, and the approximation is valid.2

[solution-5,5]

1In any case, the optimizer is uses non-linear least-squares to optimize the frequencies, which is not the best choice in
this case. We’d rather use linear least-squares because we know the second sidelobes should be separated by exactly 2νorb,
i.e. we know the frequencies. But we don’t want to set up a new function right now, and we don’t need to.

2If you are using this tutorial to analyse a more eccentric binary, see Shibahashi et al. (2015) MNRAS 450, 3999 for a
more complete formalism.

4

https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3999S


Exercises — 1 The FM technique

5.6 Calculate alpha

The binary mass function, f(M), and the (projected) semi-major axis of the pulsating star’s orbit,
a1 sin i, require the calculation of the parameter α, which relates the amplitude of the first sidelobes to
the central peak. To first order, α can be approximated as

α ' A1p1 +A1m1

A1
, (5)

but this is only valid for α� 1. A more accurate formula is

α+
α3

8
+O(α5) =

A1p1 +A1m1

A1
, (6)

where we shall ignore terms of O(α5).

Depending on your python ability, you can either write your own code to solve this cubic equation for α,
perhaps implementing the np.roots function and using [hints-5,6], or you can copy function-5,6 which
will do it for you.

The uncertainty on α is calculable by combining the uncertainties on A1, A1p1 and A1m1 in quadrature.
[solution-5,6]

5.7 Calculate the binary mass function

The mass function relates the component masses, m1 and m2 of a binary system,

f(M) = f(m1,m2, sin i) =
m3

2 sin3 i

(m1 +m2)2
, (7)

where i is the orbital inclination. Two equal-mass components seen at an inclination of 90◦ (i.e. edge-on,
eclipsing) will have a mass function of 0.5. The same system seen at i = 0◦ will have a mass function of
0. Generally, a lower mass function suggests a lower companion mass, but we rarely know the inclination
of a system. This method, like the RV and PM methods, is unable to determine the inclination separately.

The mass function is given by

f(M) = α3 P
3
osc

P 2
orb

c3

2πG
, (8)

where Posc is the period of the oscillation mode (i.e. the reciprocal of its frequency), c is the speed of
light and G is the gravitational constant. For a mass function in S.I. units, i.e. in kg, you’ll need to con-
vert Posc and Porb from units of days to units of seconds. You can then convert the answer to solar masses.

Once more, the uncertainty is calculable by combining other uncertainties in quadrature. Be careful of
the exponents! [hint-5,7] [solution-5,7]

5.8 Calculate the semi-major axis

Since we cannot determine the inclination separately, we can only compute the projected semi-major
axis, meaning a1 sin i, convolved with inclination. For this, we use α again

a1 sin i =
αc

2πνosc
. (9)

Make sure you think about units carefully! You can convert an S.I. quantity to more useful units; au
and R� are often used. My own preference is units of light-seconds, i.e. to quote a1 sin i/c in units of
seconds, because this corresponds neatly to light arrival-time delays measured in seconds. [solution-5,8]

5



Exercises — 1 The FM technique

5.9 Calculate the (minimum) companion mass

The lowest companion mass implied by the mass function occurs for i = 90◦. We can compute this
minimum mass by making an assumption on the primary mass. Since we believe the primary star is
a typical δ Sct star, it has a mass somewhere around m1 = 1.7 M�. Copy the two functions-5,9 for
computing the companion mass to estimate the mass of the companion in solar masses. [solution-5,9]

The uncertainty on the minimum companion mass is difficult to specify analytically, though easy to
determine numerically. You can simply send fm msun - fm msun err to the function compute m2. How-
ever, since we do not know i, and we simply guessed that m1 = 1.7 M�, we cannot consider this to be
an accurate uncertainty.

The End

That’s the end! As stated in the introduction, this is a challenging Exercise. It is okay if you didn’t
finish all of the steps. You have the data and these instructions and the hints/solutions available, so you
can continue in your own time if you wish. If you finished early, or if you wish to pursue the method
further, continue reading the next section.

Following this Exercise, you should have got parameters similar to those in Table 1.

6. Challenges / future work

Every pulsation frequency of the star should be similarly affected by the binary orbit. Move on to the
next few pulsation frequencies of this star. Obtain your f2, a2, and φ2 (etc.) results, for both pulsation
frequencies and their sidelobes, simultaneously with the fit for f1. You should get similar answers from
the other pulsation frequencies. You can combine the results from the different pulsation frequencies
into a single orbital solution.

Finally – and this something you really won’t have time to do in class – you can look at other binaries.
KIC 11754974 is a nice example of a circular binary, with the added challenge of gaps in Kepler data
coverage. There’s a whole catalogue of Kepler binaries you can play with, with solved orbits so that you
can check your solutions (Murphy et al. (2018) MNRAS 474, 4322).

7. Things to note if you use this for research

Please cite the two FM papers. It would be wise to read and understand these papers. There is some
additional complexity that was not accounted for in this Exercise.

Parameter units value uncertainty

Porb d 412.1 0.7

a1 sin i/c s 170.3 3.5

f(M) M� 0.0312 0.0011

e 0.44

m2,min M� 0.54 [0.01]

Table 1: Table of orbital parameters for KIC 9594022, as determined via this Exercise.

6

https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.4322M
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..738S
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3999S


Exercises — 1 The FM technique

One should check that the frequency modulation originates from binary motion. There is a mathe-
matical test for this. One must force the frequency splittings of the first sidelobes to be equal (to
their mean), and then compute their phases with respect to a time of inferior or superior conjunction.
If the origin is binarity, the sidelobe phases should be different by π/2 rad. See the FM1 paper for details.

Note that the orientation of the orbital ellipse (specifically the longitude of periastron), $, influences the
derived value of α. This example was chosen for $ to be close to 3π/2 so that cos2$ ∼ 0, for simplicity.
For any other system, it will be necessary to use the phases of the second sidelobes to determine $, in
accordance with eq.(53) of the FM2 paper.

It is necessary to implement a least-squares fitting procedure, rather than the current non-linear least-
squares procedure, in order to analyse the second sidelobes and to check the aforementioned π/2 phase
relationship.

7

https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..738S
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3999S

