Introduction to Wavelets Analysis

A. Christen

based on a presentation from Prof. Bebis

Introduction

- What are wavelets?
-What are they for?
- What are its advantages and disadvantages compared to Fourier analysis?
- What can they be used for, in time series(processes dependent of time)?

Introduction

- What are wavelets?

They are bases of functions in a certain space of functions.

- What are they for?

To approximate functions: a time series, an image, a probability density function, a regression function, etc.

Introduction

- What are its advantages and disadvantages compared to Fourier analysis?
They allow local changes to be detected more efficiently. They are more flexible but do not approximate so well defined sine waves in all the real domain.
- What can they be used for, in time series (processes dependent of time)?
To estimate the time series, to denoise the time series, to detect change points, among other applications.

Short Time Fourier Transform - revisited

- Time - Frequency localization depends on window size.
- Wide window \rightarrow good frequency localization, poor time localization.

- Narrow window \rightarrow good time localization, poor frequency localization.

Wavelet Transform

- Uses a variable length window, e.g.:
- Narrower windows are more appropriate at high frequencies
- Wider windows are more appropriate at low frequencies

What is a wavelet?

- A function that "waves" above and below the x -axis with the following properties:
- Varying frequency
- Limited duration
- Zero average value
- This is in contrast to sinusoids, used by FT, which have infinite duration and constant frequency.

Sinusoid
Wavelet

Types of Wavelets

- There are many different families of wavelets, for example:

Haar

Morlet

Daubechies

Basis Functions Using Wavelets

- Like $\sin ($) and $\cos ()$ functions in the Fourier Transform, wavelets can define a set of basis functions $\psi_{k}(\mathrm{t})$:

- Span of $\psi_{k}(t)$: vector space S containing all functions $f(t)$ that can be represented by $\psi_{k}(\mathrm{t})$.

Basis Construction - "Mother" Wavelet

The basis can be constructed by applying translations and scalings (stretch/compress) on the "mother" wavelet $\psi(t)$:

$$
\psi(s, \tau, t)=\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)
$$

Example:

$\psi(\mathrm{t})$

Basis Construction - Mother Wavelet

- It is convenient to take special values for s and τ in defining the wavelet basis: $\mathrm{s}=2^{-\mathrm{j}}$ and $\tau=\mathrm{k} .2^{-\mathrm{j}}$
(dyadic/octave grid)
$\psi(s, \tau, t)=\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)=\frac{1}{\sqrt{2^{-j}}} \psi\left(\frac{\left.t-k \cdot 2^{-j}\right)}{2^{-j}}\right)=2^{\frac{j}{2}} \psi\left(2^{j} t-\mathrm{k}\right)=\psi_{j k}(t)$
scale $=1 / 2^{j}$
(1/frequency)

Continuous Wavelet Transform (CWT)

Illustrating CWT

1. Take a wavelet and compare it to a section at the start of the original signal.
2. Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity.

$$
C(\tau, s)=\frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*}\left(\frac{t-\tau}{s}\right) d t
$$

Illustrating CWT (cont’d)

3. Shift the wavelet to the right and repeat step 2 until you've covered the whole signal.

Illustrating CWT (cont’d)

4. Scale the wavelet and go to step 1.

5. Repeat steps 1 through 4 for all scales.

Visualize CTW Transform

- Wavelet analysis produces a time-scale view of the input signal or image.

$$
C(\tau, s)=\frac{1}{\sqrt{s}} \int_{t} f(t) \Psi^{*}\left(\frac{t-\tau}{s}\right) d t
$$

Continuous Wavelet Transform (cont'd)

Forward CWT: $\quad C(\tau, s)=\frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*}\left(\frac{t-\tau}{s}\right) d t$

Inverse CWT:
$f(t)=\frac{1}{\sqrt{s}} \iint_{\tau \uparrow} C(\tau, s) \psi\left(\frac{t-\tau}{s}\right) d \tau d s$
Note the double integral!

Fourier Transform vs Wavelet Transform

Fourier
Signal

$$
f(x)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
$$

Fourier Transform vs Wavelet Transform

$$
f(t)=\frac{1}{\sqrt{s}} \iint_{\tau} C(\tau, s) \psi\left(\frac{t-\tau}{s}\right) d \tau d s
$$

Properties of Wavelets

- Simultaneous localization in time and scale
- The location of the wavelet allows to explicitly represent the location of events in time.
- The shape of the wavelet allows to represent different detail or resolution.

Properties of Wavelets (cont’d)

- Sparsity: for functions typically found in practice, many of the coefficients in a wavelet representation are either zero or very small.

$$
f(t)=\frac{1}{\sqrt{s}} \int_{\tau} \int_{s} C(\tau, s) \psi\left(\frac{t-\tau}{s}\right) d \tau d s
$$

Properties of Wavelets (cont'd)

$$
f(t)=\frac{1}{\sqrt{s}} \int_{\tau} \int_{s} C(\tau, s) \psi\left(\frac{t-\tau}{s}\right) d \tau d s
$$

- Adaptability: Can represent functions with discontinuities or corners more efficiently.
- Linear-time complexity: many wavelet transformations can be accomplished in $\mathrm{O}(\mathrm{N})$ time.

Discrete Wavelet Transform (DWT)

(forward DWT)

$$
f(t)=\sum_{k} \sum_{j} a_{j k} \psi_{j k}(t)
$$

(inverse DWT)
where

$$
\psi_{j k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)
$$

DFT vs DWT

- DFT expansion: one parameter basis

$$
f(x)=\sum_{u=0}^{N-1} F(u) e^{\frac{j 2 \pi u x}{N}}
$$

$$
\text { or } f(t)=\sum_{l} a_{l} \psi_{l}(t)
$$

- DWT expansion two parameter basis

$$
f(t)=\sum_{k} \sum_{j} a_{j k} \psi_{j k}(t)
$$

Multiresolution Representation Using Wavelets

fine
details
wider, large translations

$$
f(t)=\sum_{k} \sum_{j} a_{k} \psi_{\mu k}(t)
$$

Multiresolution Representation Using Wavelets

Multiresolution Representation Using Wavelets

fine
details

coarse details

Multiresolution Representation Using Wavelets

high resolution
(more details)
$\overbrace{1}^{n}(t)$

low resolution (less details)

$$
f(t)=\sum_{k} \sum_{j} a_{j k} \psi_{j k}(t)
$$

Pyramidal Coding - Revisited

Pyramidal Coding - Revisited

Prediction Residual
Pyramid
ζ reconstruct

Approximation Pyramid

Efficient Representation Using Details (cont'd)

representation: $\mathrm{L}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}$ in general: $\mathrm{L}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \ldots \mathrm{D}_{\mathrm{J}}$

A wavelet representation of a function consists of
(1) a coarse overall approximation
(2) detail coefficients that influence the function at various scales

Reconstruction (synthesis)

$$
\text { details } \mathrm{D}_{3}
$$

Example - Haar Wavelets

- Suppose we are given a 1D "image" with a resolution of 4 pixels:
[9735]
- The Haar wavelet transform is the following:
$\left[\begin{array}{llll}6 & 2 & 1 & -1\end{array}\right]$ (with sub-sampling)
$L_{0} D_{1} D_{2} D_{3}$

Example - Haar Wavelets (cont'd)

- Start by averaging and subsampling the pixels together (pairwise) to get a new lower resolution image:

$$
\left[\begin{array}{lll}
9 & 7 & 3
\end{array}\right] \quad \Rightarrow\left[\begin{array}{ll}
8 & 4
\end{array}\right]
$$

- To recover the original four pixels from the two averaged pixels, store some detail coefficients.

Resolution Averages Detail Coefficients

2^{1}
$\left[\begin{array}{lll}{\left[\begin{array}{lll}9 & 7 & 3\end{array}\right.} \\ {\left[\begin{array}{lll}8 & 4\end{array}\right]}\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & -1]
\end{array}\right.
$$

Example - Haar Wavelets (cont’d)

- Repeating this process on the averages (i.e., low resolution image) gives the full decomposition:

Resolution Averages Detail Coefficients
2
$\left[\begin{array}{ccc}9 & 7 & 3 \\ {[8} & 4\end{array}\right]$
$[6]$
5]
[]
[1-1]
4
\checkmark
Haar decomposition:
$\left[\begin{array}{llll}6 & 2 & 1 & -1\end{array}\right]$

Example - Haar Wavelets (cont'd)

- The original image can be reconstructed by adding or subtracting the detail coefficients from the lowerresolution representations.

$$
\begin{array}{llll}
{\left[\begin{array}{llll}
6 & 2 & 1 & -1
\end{array}\right]} \\
L_{0} D_{1} & D_{2} & D_{3}
\end{array}
$$

$$
[6] \stackrel{2}{\square}\left[\begin{array}{ll}
8 & 4
\end{array}\right] \stackrel{1-1}{\square}\left[\begin{array}{llll}
9 & 7 & 3 & 5
\end{array}\right]
$$

Example - Haar Wavelets (cont’d)

How should we compute the detail coefficients D_{j} ?

Multiresolution Conditions

- If a set of functions V can be represented by a weighted sum of $\psi\left(2^{j} t-k\right)$, then a larger set, including V , can be represented by a weighted sum of $\psi\left(2^{\mathrm{j}^{+1} t} t-k\right)$.

Multiresolution Conditions (cont'd)

V_{j} : span of $\psi(2 i t-k): \quad f_{j}(t)=\sum_{k} a_{k} \psi_{j k}(t)$

$V_{j} \subseteq V_{j+1}$

Multiresolution Conditions (cont'd)

Nested Spaces
$\mathrm{j}=0 \quad \psi(t-k) \quad \longrightarrow \mathrm{V}_{0}$
$\mathrm{j}=1 \quad \psi(2 t-k) \longrightarrow \mathrm{V}_{1}$
j $\quad \psi(2 \mathrm{i} t-k) \longrightarrow \mathrm{V}_{\mathbf{j}}$

$$
V_{j} \subset V_{j+1}
$$

if $\mathrm{f}(\mathrm{t}) \in V_{j}$ then $\mathrm{f}(\mathrm{t}) \in V_{j+1}$

How to compute D_{j} ?

IDEA:

Define a set of basis functions that span the difference between $\mathrm{V}_{\mathrm{j}+1}$ and V_{j}

How to compute D_{j} ? (cont'd)

- Let W_{j} be the orthogonal complement of V_{j} in $\mathrm{V}_{\mathrm{j}+1}$

$$
V_{j+1}=V_{j}+W_{j}
$$

How to compute D_{j} ? (cont'd)

If $f(t) \in V_{j+1}$, then $f(t)$ can be represented using basis functions $\varphi(\mathrm{t})$ from $\mathrm{V}_{\mathrm{j}+1}$:

$$
\mathrm{V}_{\mathrm{j}-1} \quad f(t)=\sum_{k} c_{k} \varphi\left(2^{\prime+1} t-k\right)
$$

Alternatively, $\mathrm{f}(\mathrm{t})$ can be represented using two sets of basis functions, $\varphi(\mathrm{t})$ from V_{j} and $\psi(\mathrm{t})$ from W_{j} :

$$
V_{j+1}=V_{j}+W_{j}
$$

$$
f(t)=\sum_{k} c_{k} \varphi\left(2^{j} t-k\right)+\sum_{k} d_{j k} \psi\left(2^{j} t-k\right)
$$

How to compute D_{j} ? (cont'd)

Think of W_{j} as a means to represent the parts of a function in V_{j+1} that cannot be represented in V_{j}

How to compute D_{j} ? (cont'd)

- $\mathrm{V}_{\mathrm{j}+1}=\mathrm{V}_{\mathrm{j}}+\mathrm{W}_{\mathrm{j}} \rightarrow$ using recursion on V_{j} :

$$
\mathrm{V}_{\mathrm{j}+1}=\mathrm{V}_{\mathrm{j}-1}+\mathrm{W}_{\mathrm{j}-1}+\mathrm{W}_{\mathrm{j}}=\ldots=\mathrm{V}_{0}+\mathrm{W}_{0}+\mathrm{W}_{1}+\mathrm{W}_{2}+\ldots+\mathrm{W}_{\mathrm{j}}
$$

if $f(t) \in V_{j+1}$, then:

$$
\begin{array}{r}
f(t)=\sum_{k} c_{k} \varphi(t-k)+\sum_{k} \sum_{j} d_{j k} \psi\left(2^{j} t-k\right) \\
\mathrm{W}_{0}, \mathrm{~W}_{1}, \mathrm{~W}_{2}, \ldots
\end{array}
$$ basis functions basis functions

Summary: wavelet expansion (Section 7.2)

- Wavelet decompositions involve a pair of waveforms:
encodes low

resolution info $\varphi(\mathrm{t}) \quad \psi(\mathrm{t}) \quad$| encodes details or |
| :--- |
| high resolution info |

$$
f(t)=\sum_{k} c_{k} \varphi(t-k)+\sum_{k} \sum_{J} d_{k} \psi\left(2^{\prime} t-k\right)
$$

Terminology: scaling function wavelet function

1D Haar Wavelets

- Haar scaling and wavelet functions:

computes average (low pass)

computes details
(high pass)

1D Haar Wavelets (cont'd)

Let's consider the spaces corresponding to different resolution 1D images:
V_{0}
1-pixel
($\mathrm{j}=0$)
$V_{1} \quad \bullet \quad$ 2-pixel $\quad(\mathrm{j}=1)$
V_{2} • • • 4-pixel $\quad(\mathrm{j}=2)$
etc.

1D Haar Wavelets (cont’d)

$$
j=0
$$

- V_{0} represents the space of 1 -pixel $\left(2^{0}\right.$-pixel) images
- Think of a 1-pixel image as a function that is constant over [0,1)

Example:

width: 1

1D Haar Wavelets (cont’d)

$$
\mathrm{j}=1
$$

- V_{I} represents the space of all 2 -pixel (2^{1}-pixel) images
- Think of a 2 -pixel image as a function having 2^{1} equalsized constant pieces over the interval $[0,1)$.

Example:

width: $1 / 2$

Note that: $\quad V_{0} \subset V_{1}$
e.g.,

1D Haar Wavelets (cont’d)

- V_{j} represents all the 2^{j}-pixel images
- Functions having 2^{j} equal-sized constant pieces over interval [0,1).

Note that:

width: $1 / 2^{\mathrm{j}-1}$

width: 1/2

1D Haar Wavelets (cont’d)

$V_{0}, V_{l}, \ldots, V_{j}$ are nested

$$
\text { i.e., } \quad V_{j} \subset V_{j+1}
$$

$\mathrm{V}_{\mathrm{j}} \quad$ fine details
\ldots
$\begin{array}{ll}\mathrm{V}_{1} \\ \mathrm{~V}_{0} & \text { coarse info }\end{array}$

Define a basis for V_{j}

- Scaling function:

$$
\phi(x)=\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Let's define a basis for V_{j} :

$$
\phi_{i}^{j}(x):=\phi\left(2^{j} x-i\right), \quad i=0,1, \ldots, 2^{j}-1
$$

(scaled and translated versions of the box function below)

Note new notation: $\varphi_{i}^{j}(x) \equiv \varphi_{j i}(x)$

Define a basis for V_{j} (cont' d)

width: $1 / 2^{2}$
width: $1 / 2^{3}$

Define a basis for W_{j}

- Wavelet function:

$$
\psi(x)=\left\{\begin{array}{cc}
1 & \text { if } 0 \leq x<1 / 2 \\
-1 & \text { if } 1 / 2 \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Let's define a basis $\psi^{j}{ }_{i}$ for W_{j} :

$$
\psi_{i}^{j}(x):=\psi\left(2^{j} x-i\right), \quad i=0,1, \ldots, 2^{j}-1
$$

Note new notation: $\psi_{i}^{j}(x) \equiv \psi_{j i}(x)$

Define basis for $\mathrm{W}_{\mathrm{j}}\left(\right.$ cont' $\left.^{\mathrm{d}}\right)$

Note
that the dot product between basis functions in V_{j} and W_{j} is zero!

Basis for V_{j+1}

$\left.\begin{array}{l}\text { Basis functions } \psi_{j}^{j} \text { of } W_{j} \\ \text { Basis functions } \varphi_{i}^{j} \text { of } V_{j}\end{array}\right\}$ form a basis in V_{j+1}

Define a basis for W_{j} (cont' $^{\mathrm{d}}$)

$$
\psi(4 t-k) \quad \mathcal{W}_{2}
$$

$$
\mathrm{V}_{3}=\mathrm{V}_{2}+\mathrm{W}_{2}
$$

Define a basis for W_{j} (cont'd)

$$
\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{W}_{1}
$$

Define a basis for W_{j} (cont $^{\mathrm{d}} \mathrm{d}$)

Example - Revisited

Resolution	Averages	Detail Coefficients
4	$\left[\begin{array}{llll}9 & 7 & 3 & 5\end{array}\right]$	$\left[\begin{array}{ll}{[]} \\ 2 & {\left[\begin{array}{ll}8 & 4\end{array}\right]}\end{array}\right][1-1]$
4	$[6]$	$[2]$

$f(x)=\left[\begin{array}{llll}9 & 7 & 3 & 5\end{array}\right]$

V_{2}

Example (cont'd)

Example (cont'd)

(divide by 2 for normalization)
using the basis functions in V_{1} and W_{1}

$$
\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{W}_{1}
$$

$f(x)=c_{0}^{1} \phi_{0}^{1}(x)+c_{1}^{1} \phi_{1}^{1}(x)+d_{0}^{1} \psi_{0}^{1}(x)+d_{1}^{1} \psi_{1}^{1}(x)$

Example (cont'd)

Example (cont'd)

(divide by 2 for normalization)
using the basis functions in $\mathrm{V}_{0}, \mathrm{~W}_{0}$ and W_{1}

$$
f(t)=\sum_{k} c_{k} \varphi(t-k)+\sum_{k} \sum_{j} d_{j k} \psi\left(2^{j} t-k\right)
$$

Example

Example (cont'd)

Summary

- Structure extraction
- If the coefficient $\mathrm{d}_{\mathrm{j}, \mathrm{k}}$ is large, then this means that there is some oscillatory variation in $\mathrm{f}(\mathrm{x})$.
- Localization in time
- Efficiency
- Execution times compared with FT.
- Good recover of discountinuities and corners.
- A few amount of terms are needed to approximate.

References

- Percibal D. B., Walden A. T., Wavelet Methods for Time Series Analysis
- Ivezic Z., Connolly J., VanderPlas J., Gray A., Statistics, Data Mining, and Maching Learning in Astronomy
- Härdle W., Kerkyacharian G., Picard D., Tsybakov A., Wavelets, Approximation, and Statistical Applications
- Nason, G.P., Wavelet Methods in Statistics with R
- Thanks for your attention...

