- •
- •
- •
- •
- •
- •
- •

•

Introduction to Wavelets Analysis

A. Christen

based on a presentation from Prof. Bebis

Introduction

- What are wavelets?
- What are they for?
- What are its advantages and disadvantages compared to Fourier analysis?
- What can they be used for, in time series(processes dependent of time)?

Introduction

• What are wavelets?

They are bases of functions in a certain space of functions.

• What are they for?

To approximate functions: a time series, an image, a probability density function, a regression function, etc.

Introduction

• What are its advantages and disadvantages compared to Fourier analysis?

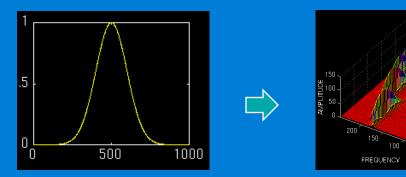
They allow local changes to be detected more efficiently. They are more flexible but do not approximate so well defined sine waves in all the real domain.

• What can they be used for, in time series (processes dependent of time)?

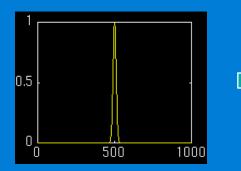
To estimate the time series, to denoise the time series, to detect change points, among other applications.

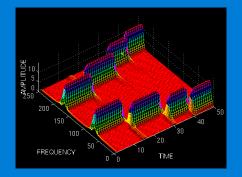
Short Time Fourier Transform - revisited

Time - Frequency localization depends on window size.
 – Wide window → good frequency localization, poor time localization.



- Narrow window \rightarrow good time localization, poor frequency localization.

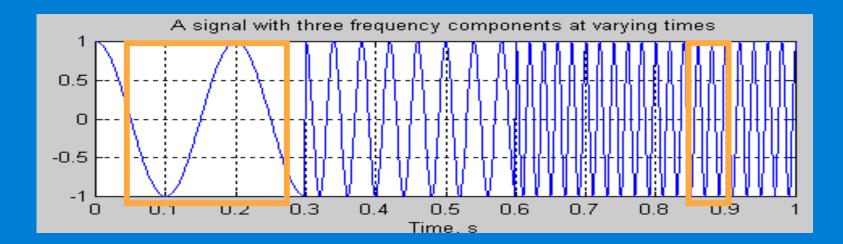




Wavelet Transform

Uses a variable length window, e.g.:

 Narrower windows are more appropriate at high frequencies
 Wider windows are more appropriate at low frequencies

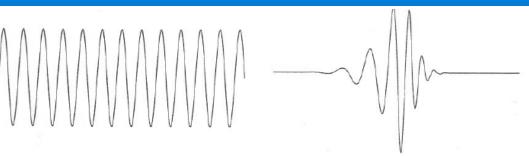


What is a wavelet?

- A function that "waves" above and below the x-axis with the following properties:
 - Varying frequency
 - Limited duration
 - Zero average value
- This is in contrast to sinusoids, used by FT, which have infinite duration and constant frequency.

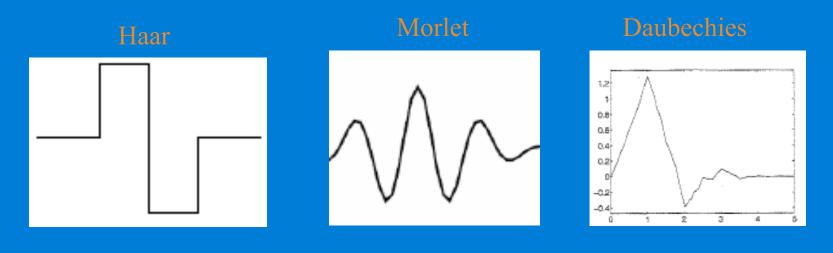
Sinusoid

Wavelet



Types of Wavelets

• There are many different families of wavelets, for example:



 \bullet

Basis Functions Using Wavelets

• Like sin() and cos() functions in the Fourier Transform, wavelets can define a set of basis functions $\psi_k(t)$:

$$f(t) = \sum_{k} a_k \psi_k(t)$$

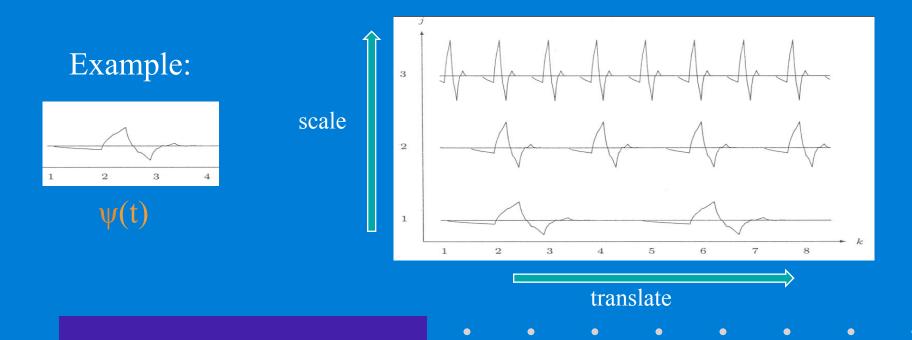
Span of ψ_k(t): vector space S containing all functions f(t) that can be represented by ψ_k(t).

 \bullet

Basis Construction – "Mother" Wavelet

The basis can be constructed by applying translations and scalings (stretch/compress) on the "mother" wavelet $\psi(t)$:

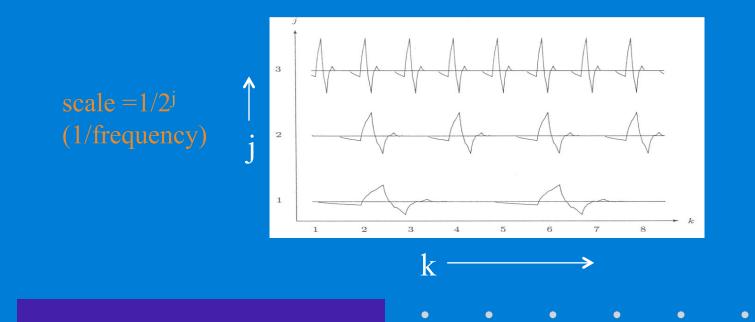
$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s})$$



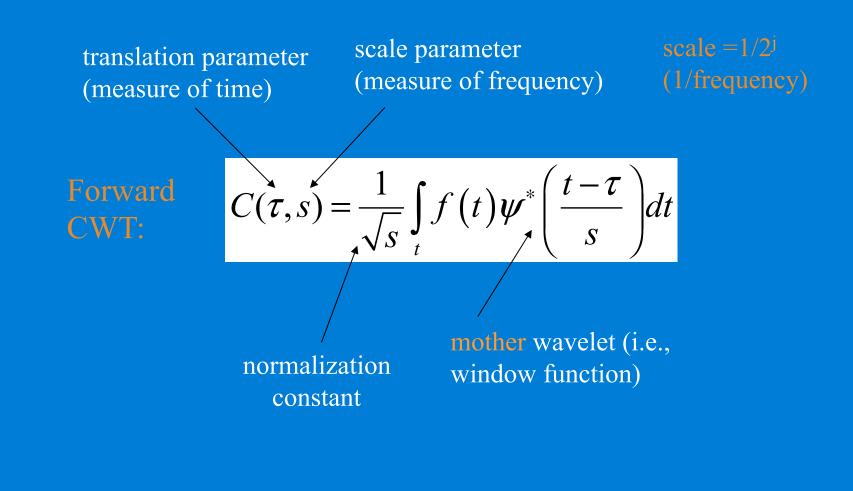
Basis Construction - Mother Wavelet

• It is convenient to take special values for s and τ in defining the wavelet basis: $s = 2^{-j}$ and $\tau = k \cdot 2^{-j}$

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s}) = \frac{1}{\sqrt{2^{-j}}}\psi\left(\frac{t-k\cdot 2^{-j}}{2^{-j}}\right) = 2^{\frac{j}{2}}\psi(2^{j}t-k) = \psi_{jk}(t)$$



Continuous Wavelet Transform (CWT)



 \bullet

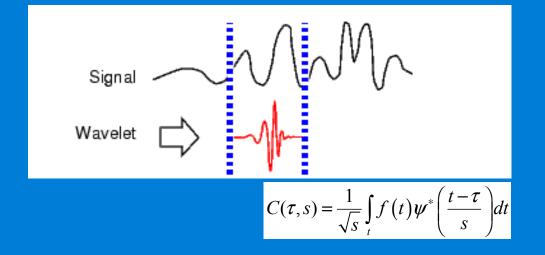
Illustrating CWT

- 1. Take a wavelet and compare it to a section at the start of the original signal.
- 2. Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity.

Signal
Wavelet
$$C = 0.0102$$
$$C(\tau, s) = \frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*} \left(\frac{t-\tau}{s}\right) dt$$

Illustrating CWT (cont'd)

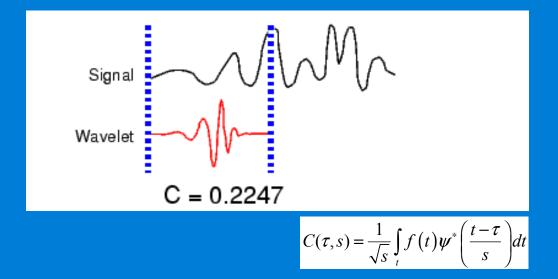
3. Shift the wavelet to the right and repeat step 2 until you've covered the whole signal.



۲

Illustrating CWT (cont'd)

4. Scale the wavelet and go to step 1.

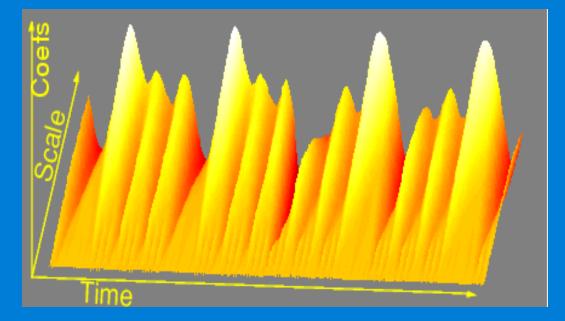


۲

5. Repeat steps 1 through 4 for all scales.

Visualize CTW Transform

• Wavelet analysis produces a time-scale view of the input signal or image.



$$C(\tau,s) = \frac{1}{\sqrt{s}} \int_{t} f(t) \psi^*\left(\frac{t-\tau}{s}\right) dt$$

Continuous Wavelet Transform (cont'd)

Forward CWT:
$$C(\tau, s) = \frac{1}{\sqrt{s}} \int_{t}^{s} f(t) \psi^*\left(\frac{t-\tau}{s}\right) dt$$

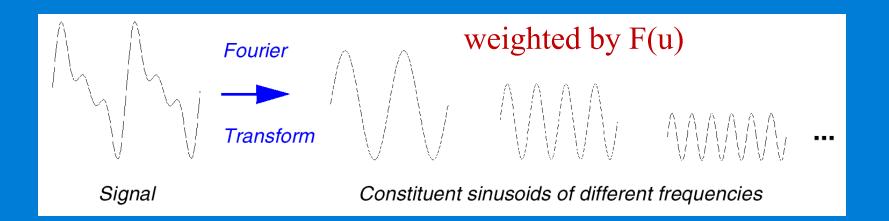
Inverse

WT:
$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

۲

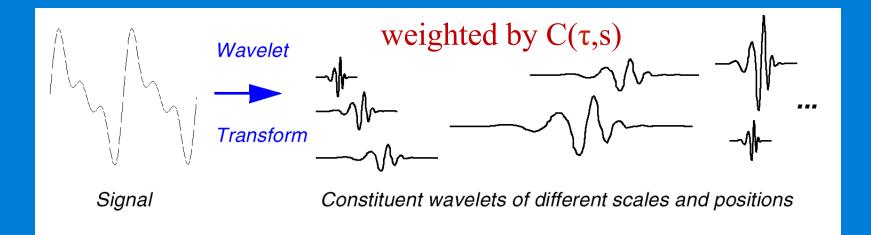
Note the double integral!

Fourier Transform vs Wavelet Transform



$$f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi u x} du$$

Fourier Transform vs Wavelet Transform



$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

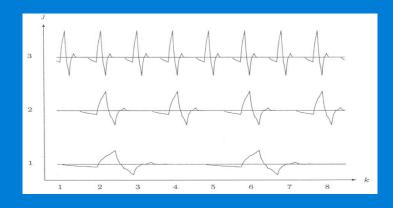
۲

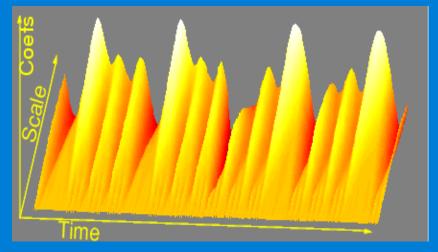
۲

•

Properties of Wavelets

- Simultaneous localization in time and scale
 - The location of the wavelet allows to explicitly represent the location of events in time.
 - The shape of the wavelet allows to represent different detail or resolution.





Properties of Wavelets (cont'd)

 Sparsity: for functions typically found in practice, many of the coefficients in a wavelet representation are either zero or very small.

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

Properties of Wavelets (cont'd)

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

- Adaptability: Can represent functions with discontinuities or corners more efficiently.
- Linear-time complexity: many wavelet transformations can be accomplished in O(N) time.

Discrete Wavelet Transform (DWT)

$$a_{jk} = \sum_{t} f(t) \psi^*_{jk}(t)$$

$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$

where

$$\boldsymbol{\psi}_{jk}(t) = 2^{j/2} \boldsymbol{\psi} \left(2^{j} t - k \right)$$

 \bullet

۲

۲

۲

DFT vs DWT

 \bullet

• DFT expansion:

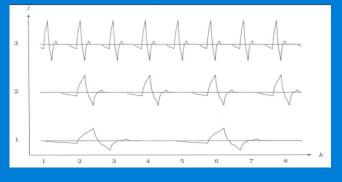
one parameter basis

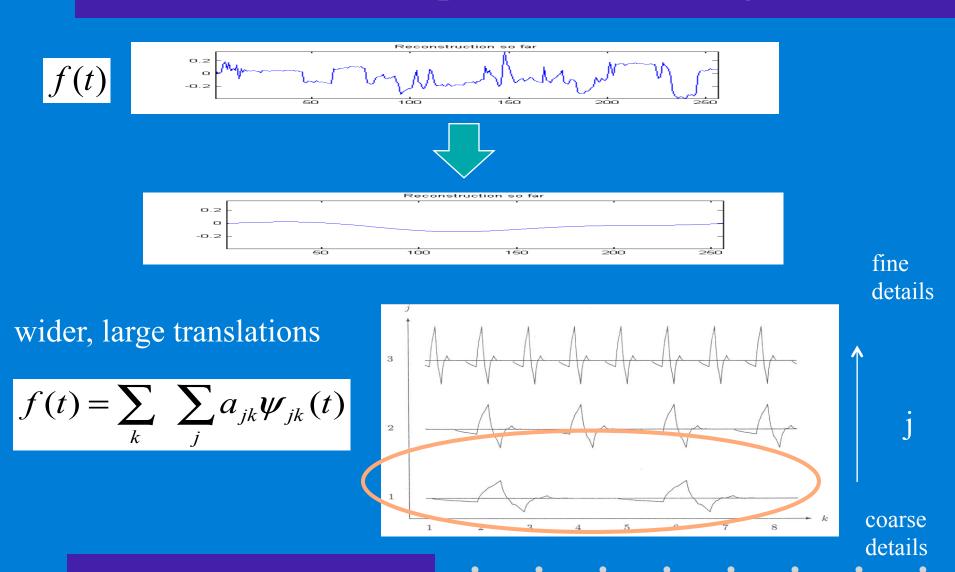
$$f(x) = \sum_{u=0}^{N-1} F(u) e^{\frac{j2\pi ux}{N}},$$

or
$$f(t) = \sum_{l} a_{l} \psi_{l}(t)$$

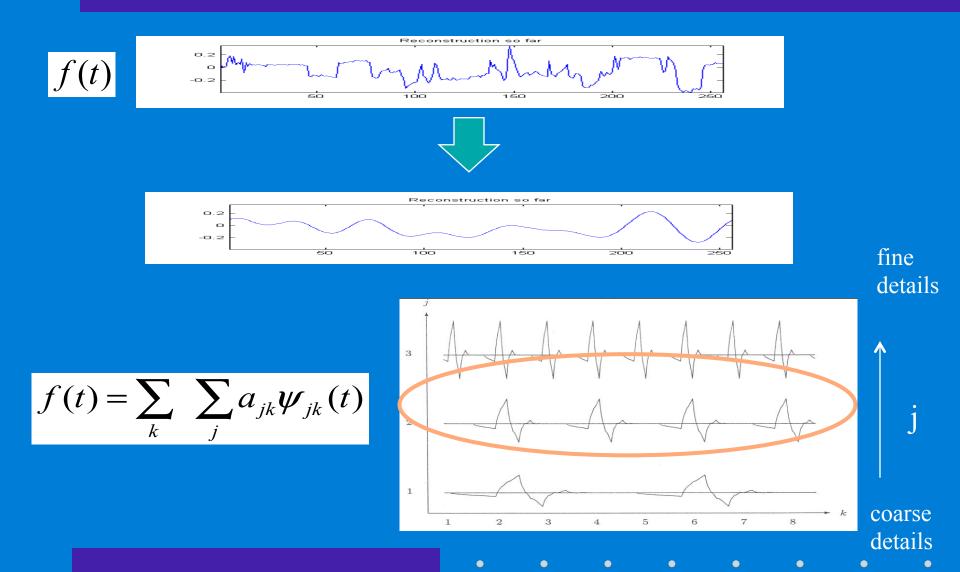
• DWT expansion two parameter basis

$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$

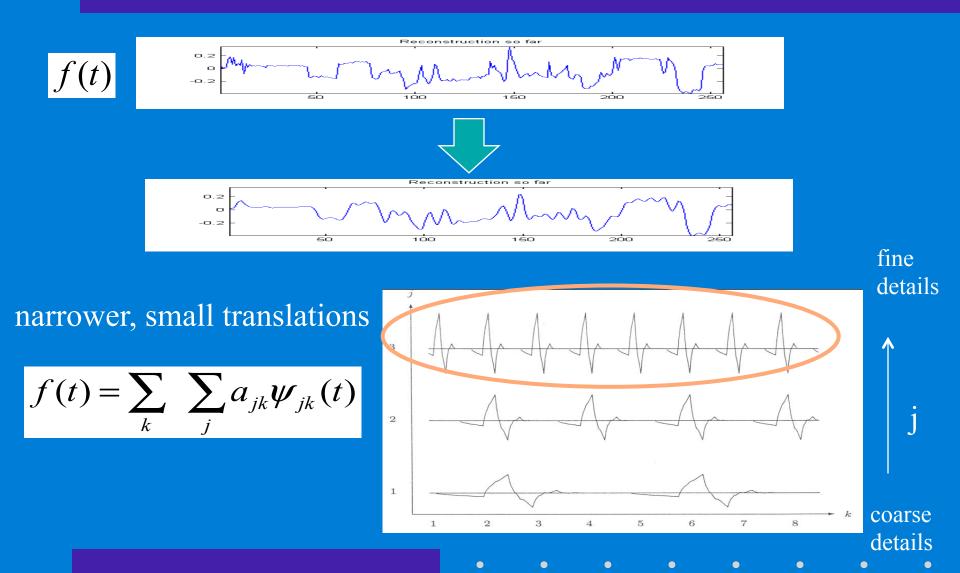


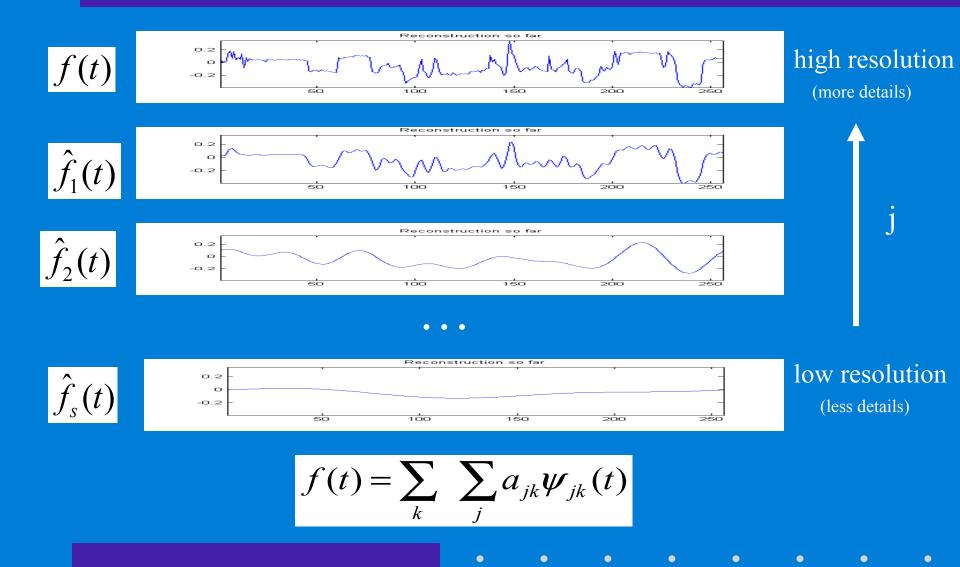


•



•



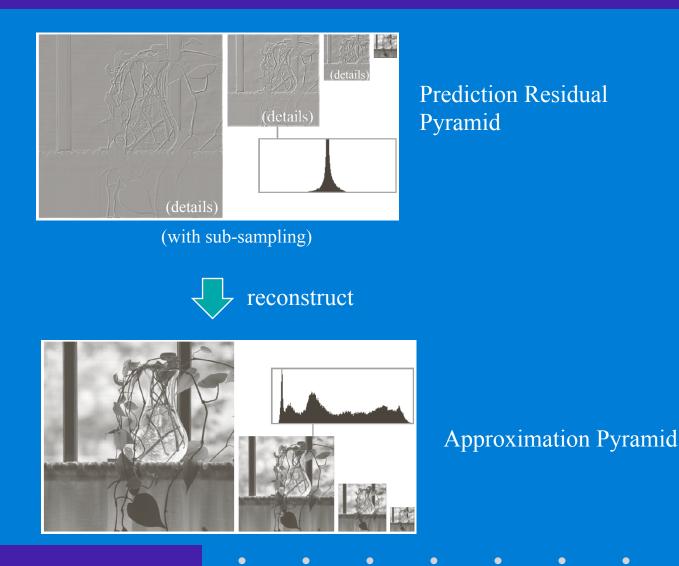


Pyramidal Coding - Revisited

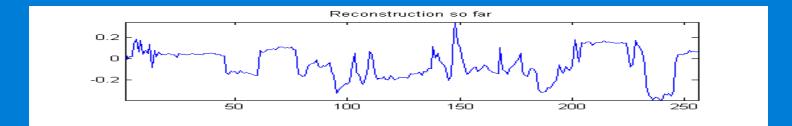
Approximation Pyramid

(with sub-sampling)

Pyramidal Coding - Revisited



Efficient Representation Using Details (cont'd)



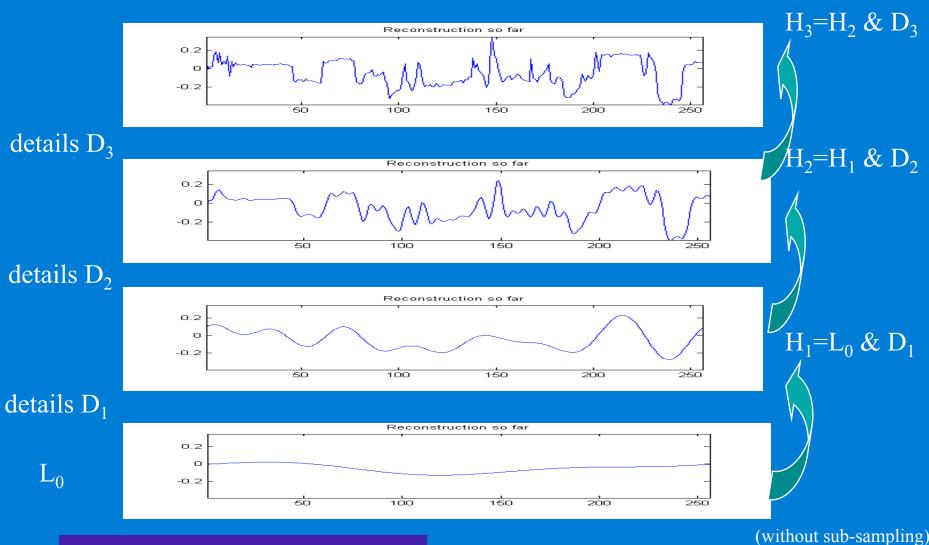
representation: $L_0 D_1 D_2 D_3$ in general: $L_0 D_1 D_2 D_3...D_J$

A wavelet representation of a function consists of(1) a coarse overall approximation(2) detail coefficients that influence the function at various scales

۲

•

Reconstruction (synthesis)



Example - Haar Wavelets

• Suppose we are given a 1D "image" with a resolution of 4 pixels:

• The Haar wavelet transform is the following:

$$\begin{bmatrix} 6 & 2 & 1 & -1 \end{bmatrix}$$
 (with sub-sampling)

 $L_0 D_1 D_2 D_3$

Example - Haar Wavelets (cont'd)

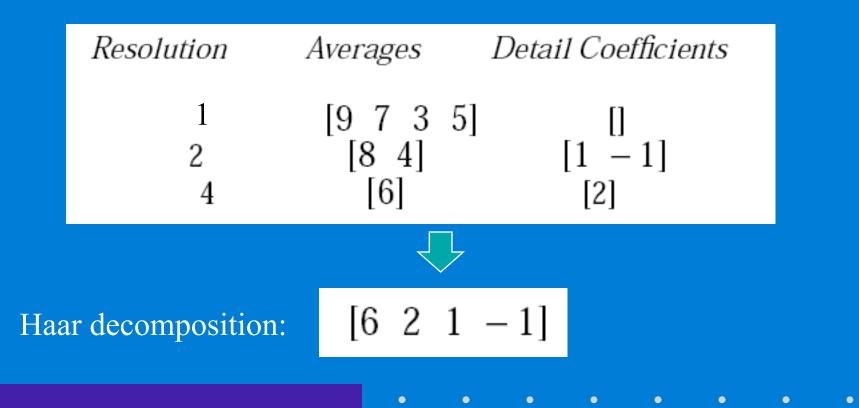
• Start by averaging and subsampling the pixels together (pairwise) to get a new lower resolution image:

• To recover the original four pixels from the two averaged pixels, store some *detail coefficients*.

Resolution	Averages	Detail Coefficients
1 2	[9 7 3 5] [8 4]	$\begin{bmatrix} 1 \\ 1 & -1 \end{bmatrix}$

Example - Haar Wavelets (cont'd)

• Repeating this process on the averages (i.e., low resolution image) gives the full decomposition:



Example - Haar Wavelets (cont'd)

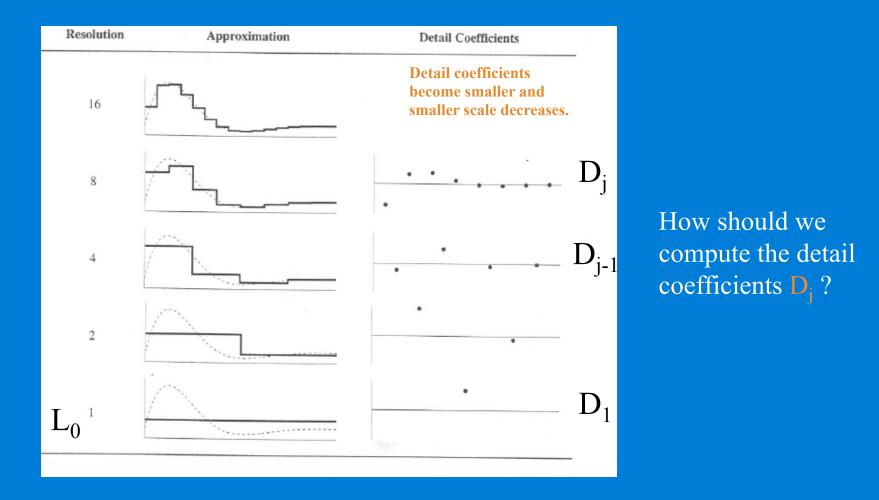
• The original image can be reconstructed by adding or subtracting the detail coefficients from the lower-resolution representations.

$$\begin{bmatrix} 6 & 2 & 1 & -1 \end{bmatrix} \\ L_0 & D_1 & D_2 & D_3 \end{bmatrix}$$

$$\begin{bmatrix} 6 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 8 & 4 \end{bmatrix} \xrightarrow{1-1} \begin{bmatrix} 9 & 7 & 3 & 5 \end{bmatrix}$$

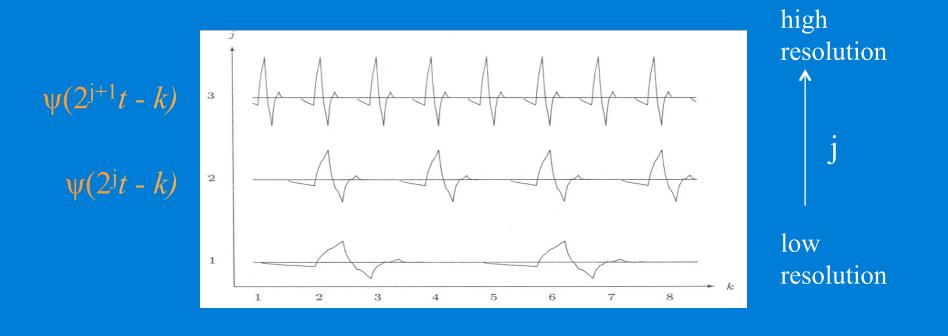
 \bullet

Example - Haar Wavelets (cont'd)



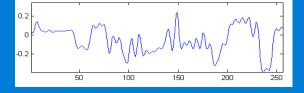
Multiresolution Conditions

• If a set of functions V can be represented by a weighted sum of $\psi(2^{j}t - k)$, then a larger set, including V, can be represented by a weighted sum of $\psi(2^{j+1}t - k)$.

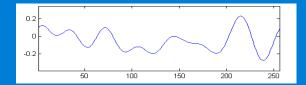


Multiresolution Conditions (cont'd)

$$V_{j+1}: \text{ span of } \psi(2^{j+1}t - k): \quad f_{j+1}(t) = \sum_{k} b_k \psi_{(j+1)k}(t)$$



$$V_j: \text{ span of } \psi(2^j t - k): \quad f_j(t) = \sum_k a_k \psi_{jk}(t)$$



 \bullet

۲

۲

۲

•

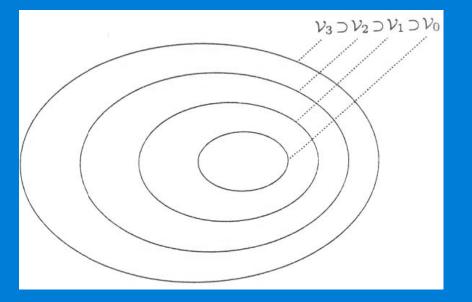
•

Multiresolution Conditions (cont'd)

 \bullet

Nested Spaces

$$j=0 \quad \psi(t-k) \longrightarrow V_0$$
$$i=1 \quad \psi(2t-k) \longrightarrow V$$



$$\int \psi(2^{j}t - k) \longrightarrow V_{j}$$

 $V_j \subset V_{j+1}$

if $f(t) \in V_j$ then $f(t) \in V_{j+1}$

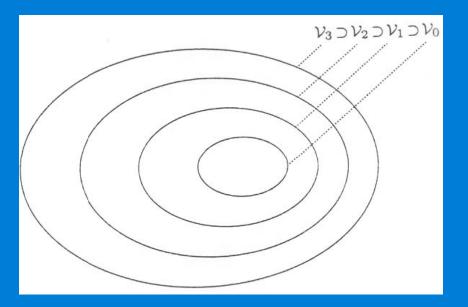
۲

۲

How to compute D_i ?

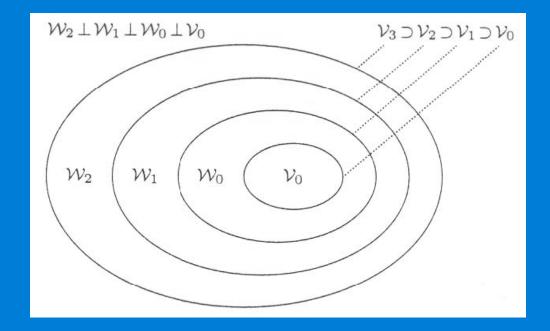
IDEA:

Define a set of basis functions that span the difference between V_{j+1} and V_j



• Let W_j be the orthogonal complement of V_j in V_{j+1}

$$\mathbf{V}_{j+1} = \mathbf{V}_j + \mathbf{W}_j$$



 \bullet

•

۲

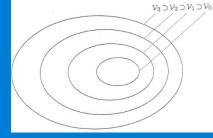
۲

۲

•

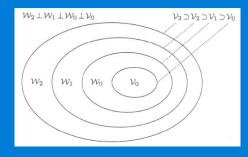
If $f(t) \in V_{j+1}$, then f(t) can be represented using basis functions $\varphi(t)$ from V_{j+1} :

$$f(t) = \sum_{k} c_k \varphi(2^{j+1}t - k)$$



Alternatively, f(t) can be represented using **two** sets of basis functions, $\varphi(t)$ from V_i and $\psi(t)$ from W_i:

$$f(t) = \sum_{k} c_{k} \varphi(2^{j} t - k) + \sum_{k} d_{jk} \psi(2^{j} t - k)$$



Think of W_j as a means to represent the parts of a function in V_{j+1} that cannot be represented in V_j

$$f(t) = \sum_{k} c_{k} \varphi(2^{j+1}t - k)$$

$$V_{j+1}$$

$$f(t) = \sum_{k} c_{k} \varphi(2^{j}t - k) + \sum_{k} d_{jk} \psi(2^{j}t - k)$$

$$V_{j}$$

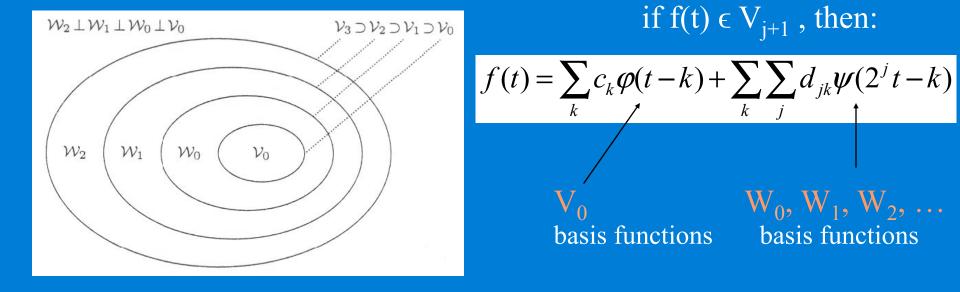
$$W_{j}$$

• $V_{i+1} = V_i + W_i \rightarrow \text{using recursion on } V_i$:

$$V_{j+1} = V_{j-1} + W_{j-1} + W_j = \ldots = V_0 + W_0 + W_1 + W_2 + \ldots + W_j$$

 \bullet

۲



Summary: wavelet expansion (Section 7.2)

• Wavelet decompositions involve a pair of waveforms:

encodes low resolution info $\phi(t)$

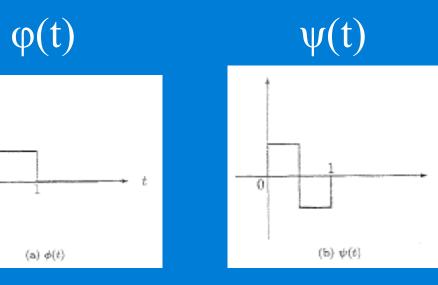
 $\psi(t)$ encodes details or high resolution info

$$f(t) = \sum_{k} c_{k} \varphi(t-k) + \sum_{k} \sum_{j} d_{jk} \psi(2^{j}t-k)$$

Terminology: scaling function wavelet function

1D Haar Wavelets

• Haar scaling and wavelet functions:



 \bullet

computes details (high pass)

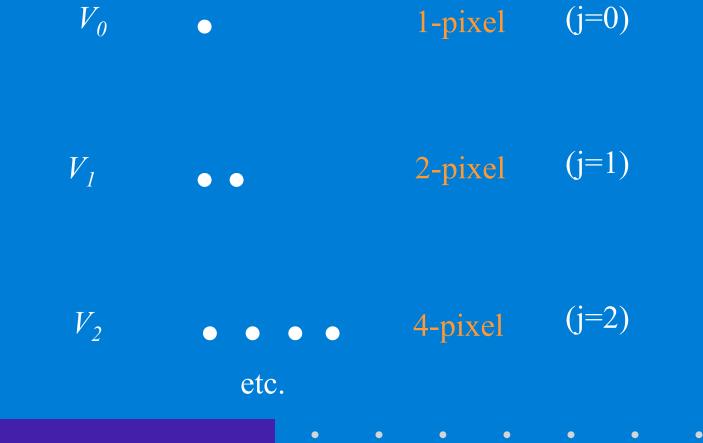
۲

۲

۲

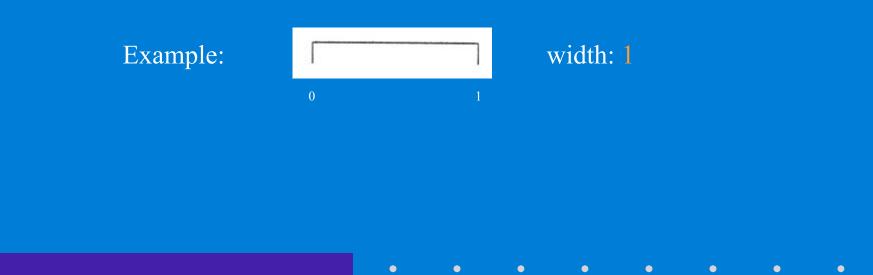
computes average (low pass)

Let's consider the spaces corresponding to different resolution 1D images:



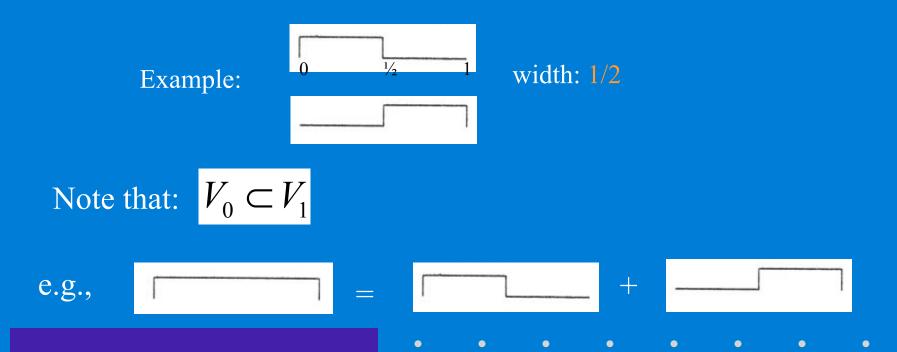
j=0

- V_0 represents the space of 1-pixel (2^o-pixel) images
- Think of a 1-pixel image as a function that is constant over [0,1)

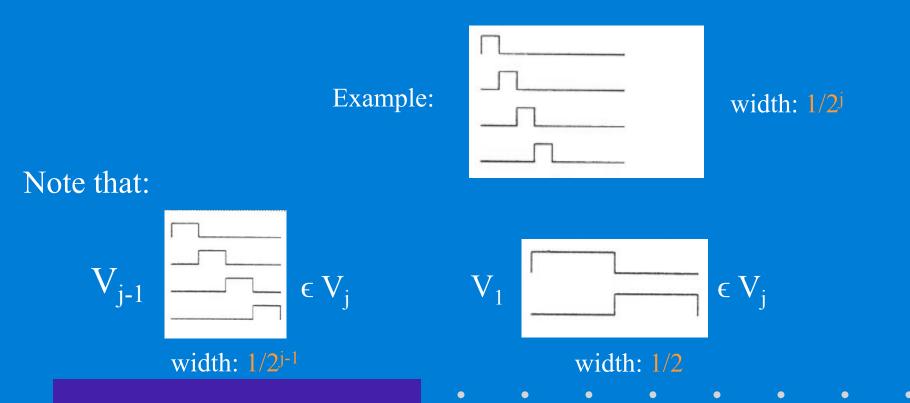


i=1

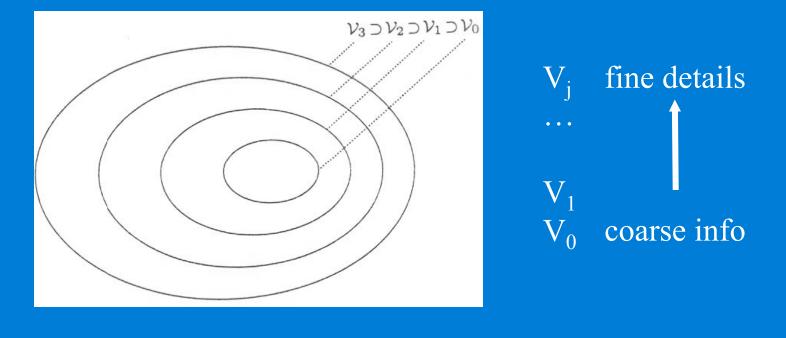
- V_I represents the space of all 2-pixel (2¹-pixel) images
- Think of a 2-pixel image as a function having 2¹ equalsized constant pieces over the interval [0, 1).



- V_i represents all the 2^j-pixel images
- Functions having 2/ equal-sized constant pieces over interval [0,1).



$$V_0, V_1, \dots, V_j$$
 are nested
i.e., $V_j \subset V_{j+1}$



 \bullet

igodol

igodol

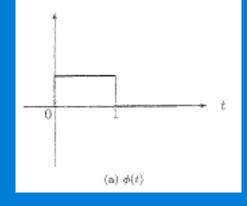
lacksquare

 \bullet

Define a basis for V_i

• Scaling function:

$$\phi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 0 & otherwise \end{cases}$$



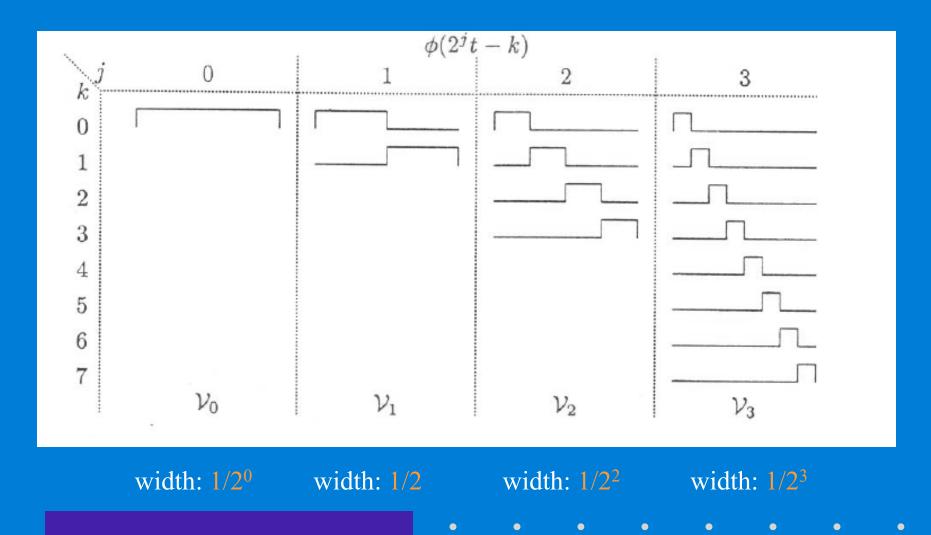
• Let's define a basis for V_j :

$$\phi_i^j(x) := \phi(2^j x - i), \quad i = 0, 1, \dots, 2^j - 1$$

(scaled and translated versions of the box function below)

Note new notation: $\varphi_i^j(x) \equiv \varphi_{ii}(x)$

Define a basis for V_i (cont'd)

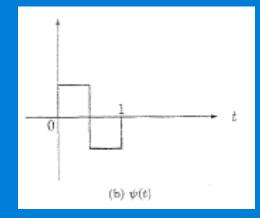


•

Define a basis for W_i

• Wavelet function:

$$\psi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2 \\ -1 & \text{if } 1/2 \le x < 1 \\ 0 & otherwise \end{cases}$$



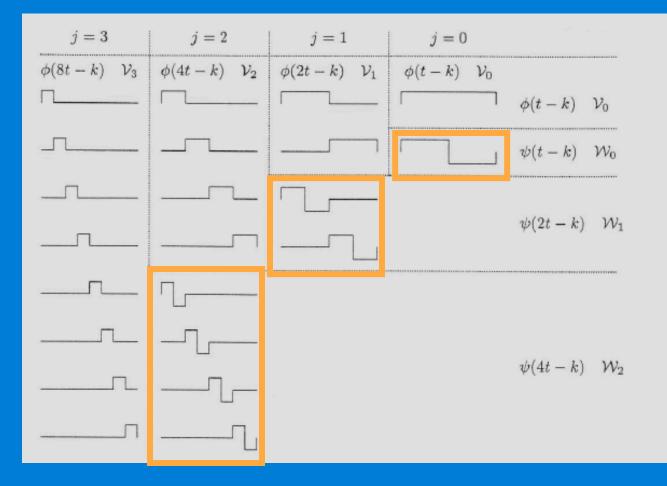
• Let's define a basis ψ_i^j for W_i :

$$\psi_i^j(x) := \psi(2^j x - i), \quad i = 0, 1, \dots, 2^j - 1$$

Note new notation: $\Psi_i^j(x) \equiv \Psi_{ji}(x)$

Define basis for W_i (cont'd)

۲



Note that the dot product between basis functions in V_j and W_j is zero!

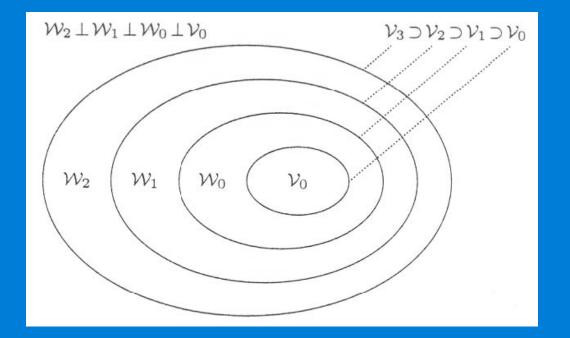
•

Basis for
$$V_{j+1}$$

Basis functions ψ_{i}^{j} of W_{j}^{j} Basis functions ϕ_{i}^{j} of V_{j}^{j}

form a basis in V $_{j+1}$

۲



Define a basis for W_i (cont'd)

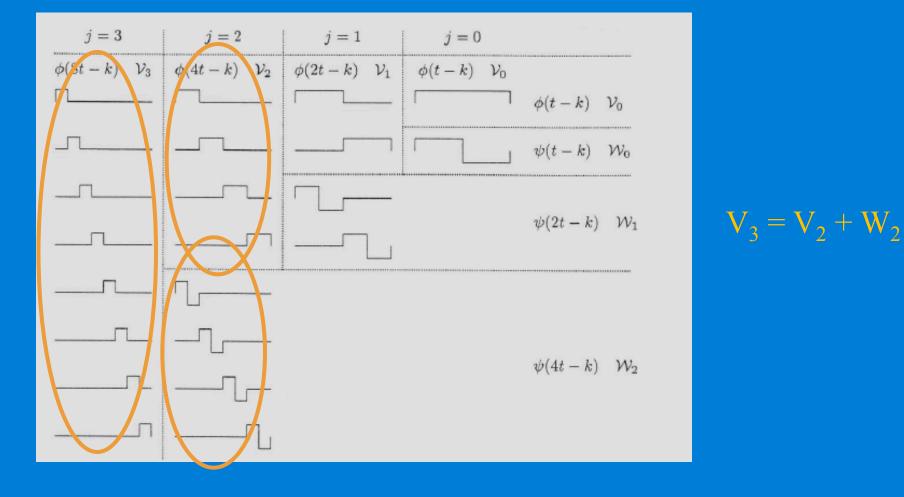
 \bullet

۲

۲

•

۲



•

Define a basis for W_i (cont'd)

 \bullet

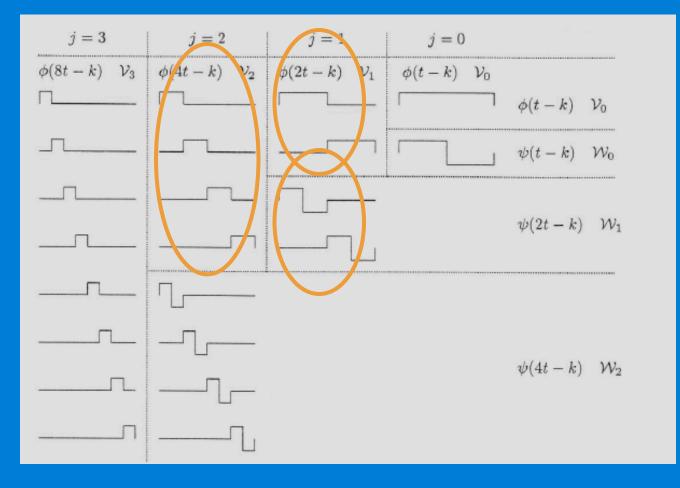
۲

۲

•

 $V_2 = V_1 + W_1$

۲



Define a basis for W_i (cont'd)

 \bullet

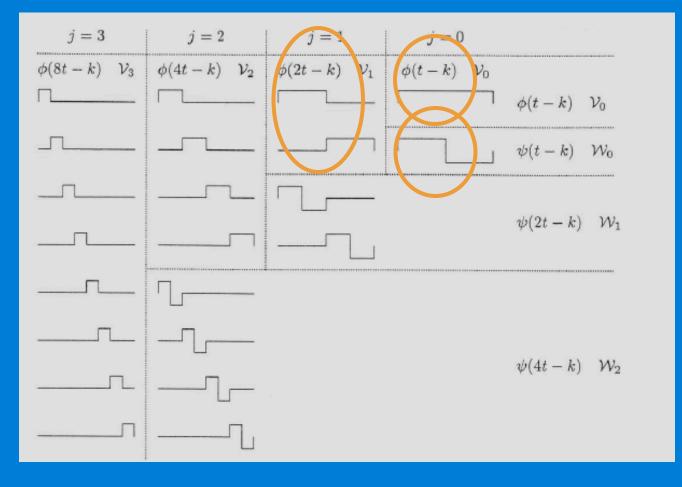
•

۲

۲

 $V_1 = V_0 + W_0$

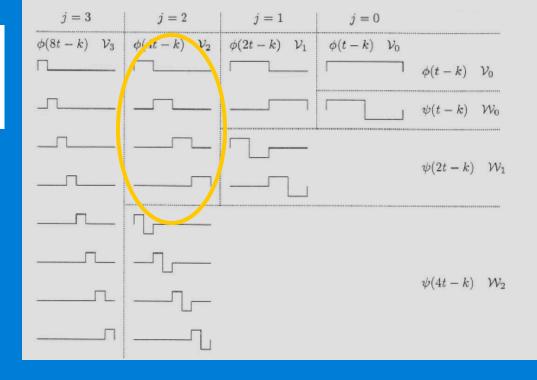
۲

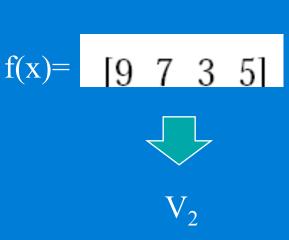


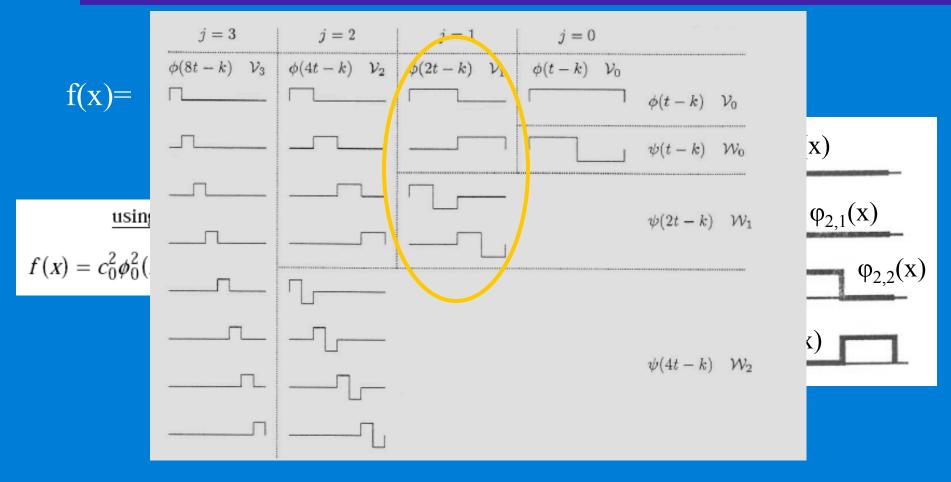
Example - Revisited

Resolution	Averages	Detail Coefficients
4 2 4	[9 7 3 5] [8 4] [6]	[] [1 - 1] [2]

•







•

•

 \bullet

 \bullet

 \bullet

۲

lacksquare

lacksquare

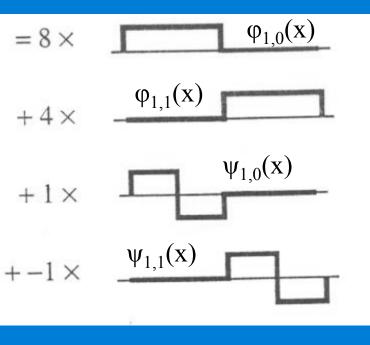
 \bullet

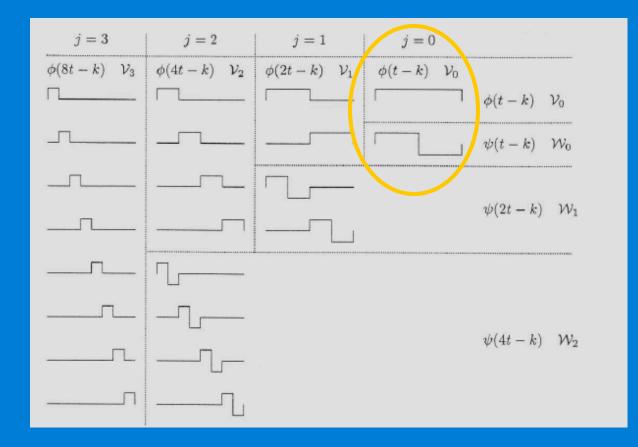
(divide by 2 for normalization)

using the basis functions in ${f V}_1^{}{ m and}{f W}_1^{}$				
$V_2 = V_1 + W_1$				
$f(x) = c_0^1 \phi_0^1(x) + c_1^1 \phi_1^1(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$				
Resolution	Averages	Detail Coefficients		
4 2 4	[9 7 3 5 [8 4] [6]	5] [] [1 — 1] [2]		

•

f





 \bullet

 \bullet

 \bullet

۲

۲

۲

۲

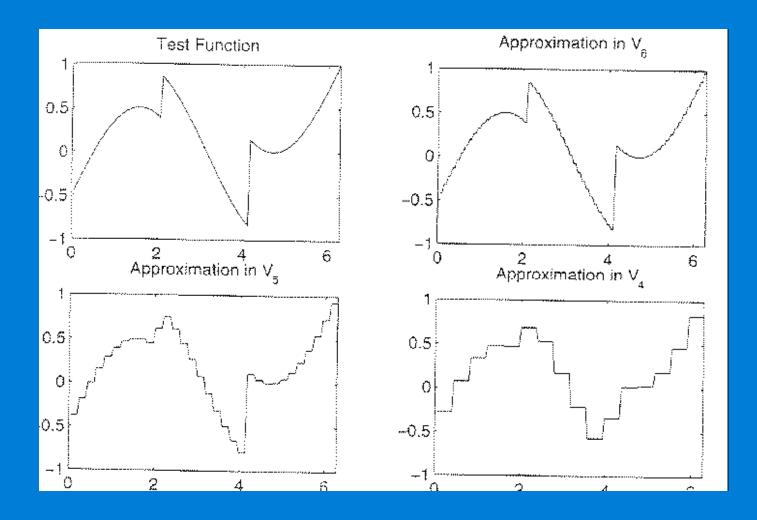
•

(divide by 2 for normalization) using the basis functions in V_0 , W_0 and W_1 $=6 \times$ $\phi_{0,0}(x)$ $V_2 = V_1 + W_1 = V_0 + W_0 + W_1$ $\psi_{0,0}(\mathbf{x})$ $f(x) = c_0^0 \phi_0^0(x) + d_0^0 \psi_0^0(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$ $+2 \times$ Detail Coefficients Resolution Averages $\psi_{1,0}(x)$ $+1 \times$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ [9 7 3 5] 4 2 [8 4] $\psi_{1,1}(\mathbf{x})$ [6] [2] 4 $+ -1 \times$

$$f(t) = \sum_{k} c_{k} \varphi(t-k) + \sum_{k} \sum_{j} d_{jk} \psi(2^{j}t-k)$$

scaling function wavelet function

Example



۲

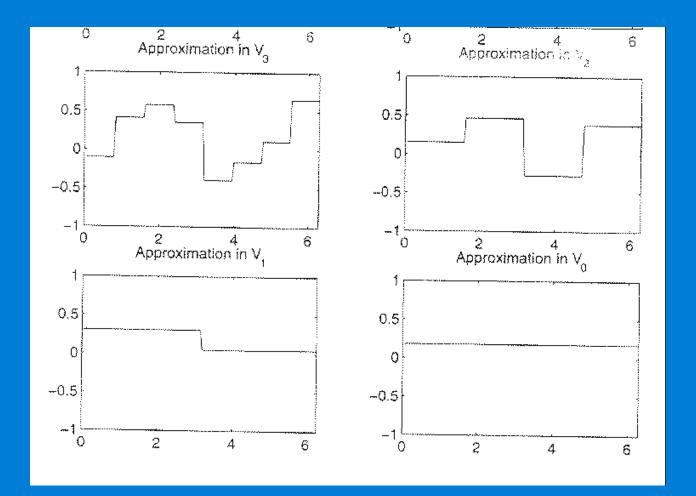
•

۲

۲

•

۲



 \bullet

 \bullet

 \bullet

•

۲

 \bullet

•

Summary

- Structure extraction
 - If the coefficient $d_{j,k}$ is large, then this means that there is some oscillatory variation in f(x).
- Localization in time
- Efficiency
 - Execution times compared with FT.
 - Good recover of discountinuities and corners.
 - A few amount of terms are needed to approximate.

References

- Percibal D. B., Walden A. T., Wavelet Methods for Time Series Analysis
- Ivezic Z., Connolly J., VanderPlas J., Gray A., Statistics, Data Mining, and Maching Learning in Astronomy
- Härdle W., Kerkyacharian G., Picard D., Tsybakov A., Wavelets, Approximation, and Statistical Applications
- Nason, G.P., Wavelet Methods in Statistics with R

- •

• Thanks for your attention...

 \bullet

•