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Introduction 

•  ︎What are wavelets?  What are wavelets?  
 
•  What are they for? 

•  What are its advantages and disadvantages compared 
to Fourier analysis?  

•  What can they be used for, in time series(processes 
dependent of time)?  

 
 



Introduction 

•  ︎What are wavelets?  What are wavelets?  
They are bases of functions in a certain space of 
functions.  
 
•  What are they for?  
To approximate functions: a time series, an image, a 
probability density function, a regression function, etc.  
 



Introduction 

•  ︎What are its advantages and disadvantages compared What are its advantages and disadvantages compared 
to Fourier analysis?  

They allow local changes to be detected more efficiently. 
They are more flexible but do not approximate so well 
defined sine waves in all the real domain.  

•  ︎What can they be used for, in time series (processes What can they be used for, in time series (processes 
dependent of time)?  

To estimate the time series, to denoise the time series, to 
detect change points, among other applications.  



Short Time Fourier Transform - revisited 

•  Time - Frequency localization depends on window size. 
–  Wide window à good frequency localization, poor time localization. 

 
–  Narrow window à good time localization, poor frequency localization. 



Wavelet Transform 

•  Uses a variable length window, e.g.: 
–  Narrower windows are more appropriate at high frequencies  
–  Wider windows are more appropriate at low frequencies 



What is a wavelet? 
•  A function that “waves” above and below the x-axis with 

the following properties: 
–  Varying frequency 
–  Limited duration 
–  Zero average value 

•  This is in contrast to sinusoids, used by FT, which have 
infinite duration and constant frequency. 

Sinusoid                                  Wavelet  



Types of Wavelets 

•  There are many different families of wavelets, for 
example: 

Morlet Haar  Daubechies 



Basis Functions Using Wavelets 
•  Like sin( ) and cos( ) functions in the Fourier Transform, 

wavelets can define a set of basis functions ψk(t): 

•  Span of ψk(t): vector space S containing all functions f(t) 
that can be represented by ψk(t). 

( ) ( )k k
k

f t a tψ=∑



Basis Construction – “Mother” Wavelet 
The basis can be constructed by applying translations and 
scalings (stretch/compress) on the “mother” wavelet ψ(t): 

scale 

translate 

Example: 

ψ(t)  



(dyadic/octave grid) 

Basis Construction - Mother Wavelet 

j

k

( )  jk tψ=

scale =1/2j 
(1/frequency)  



Continuous Wavelet Transform (CWT) 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫

translation parameter 
(measure of time) 

scale parameter  
(measure of frequency) 

mother wavelet (i.e., 
window function) normalization  

constant 

Forward 
CWT: 

scale =1/2j 
(1/frequency)  



Illustrating CWT 

1.  Take a wavelet and compare it to a section at the start 
of the original signal.  

2.  Calculate a number, C, that represents how closely 
correlated the wavelet is with this section of the 
signal. The higher C is, the more the similarity. 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫



Illustrating CWT (cont’d) 

3. Shift the wavelet to the right and repeat step 2 until you've 
covered the whole signal. 

 
 
 
 
 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫



Illustrating CWT (cont’d) 

4. Scale the wavelet and go to step 1. 
 
 
 
 
 
 
 
5. Repeat steps 1 through 4 for all scales. 
 
 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫



Visualize CTW Transform 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫

•  Wavelet analysis produces a time-scale view of the input 
signal or image. 



Continuous Wavelet Transform (cont’d) 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

ττ ψ τ−= ∫ ∫

Note the double integral! 

Inverse CWT: 

( )1( , )
t

tC s f t dt
ss
ττ ψ ∗ −⎛ ⎞= ⎜ ⎟⎝ ⎠∫Forward CWT: 



Fourier Transform vs Wavelet Transform 

weighted by F(u) 



Fourier Transform vs Wavelet Transform 

weighted by C(τ,s) 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

ττ ψ τ−= ∫ ∫



Properties of Wavelets 

•  Simultaneous localization in time and scale 
-  The location of the  wavelet allows to explicitly represent 

the location of  events in time. 
-  The shape of the wavelet  allows to represent different 

detail or resolution. 



Properties of Wavelets  (cont’d) 

•  Sparsity: for functions typically found in practice, many 
of the coefficients in a wavelet representation are either 
zero or very small. 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

ττ ψ τ−= ∫ ∫



Properties of Wavelets  (cont’d) 

•  Adaptability: Can represent functions with discontinuities 
or corners more efficiently. 

•  Linear-time complexity: many wavelet transformations 
can be accomplished in O(N) time. 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

ττ ψ τ−= ∫ ∫



Discrete Wavelet Transform (DWT) 

( ) ( )jk jk
k j

f t a tψ=∑∑

( )/2( ) 2 2   j j
jk t t kψ ψ= −

(inverse DWT) 

(forward DWT) 

where 

*( ) ( )jkjk
t

a f t tψ=∑



DFT vs DWT 

•  DFT expansion: 

•  DWT expansion 

or 

one parameter basis 

( ) ( )l l
l

f t a tψ=∑

( ) ( )jk jk
k j

f t a tψ=∑∑

two parameter basis 



Multiresolution Representation Using Wavelets 

( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

j 

fine 
details 

coarse 
details 

wider, large translations 



( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

j 

fine 
details 

coarse 
details 

Multiresolution Representation Using Wavelets 



( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

j 

fine 
details 

coarse 
details 

narrower, small translations 

Multiresolution Representation Using Wavelets 



 high resolution 
      (more details) 

low resolution 
      (less details) 

… 

( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

1̂( )f t

2̂ ( )f t

ˆ ( )sf t

j 

Multiresolution Representation Using Wavelets 



Pyramidal Coding - Revisited 

Approximation Pyramid  

(with sub-sampling) 



Pyramidal Coding - Revisited 

Prediction Residual 
Pyramid  

(details) 

(details) 

reconstruct 

(with sub-sampling) 

Approximation Pyramid  



 Efficient Representation Using Details (cont’d) 

representation:   L0 D1 D2 D3 

A wavelet representation of a function consists of  
(1)   a coarse overall approximation  
(2)   detail coefficients that  influence the function at various scales 

in general: L0 D1 D2 D3…DJ 



   Reconstruction (synthesis) 
H3=H2 & D3 

details D2 

L0 

 details D3 H2=H1 & D2 

H1=L0 & D1 

details D1 

(without sub-sampling) 



Example - Haar Wavelets 

•  Suppose we are given a 1D "image" with a resolution 
of 4 pixels: 

     [9 7 3 5] 

•  The Haar wavelet transform is the following: 
 

L0 D1 D2 D3 

(with sub-sampling) 



Example - Haar Wavelets (cont’d) 

•  Start by averaging and subsampling the pixels 
together (pairwise) to get a new lower resolution 
image: 

 
•  To recover the original four pixels from the two 

averaged pixels, store some detail coefficients. 

1 

[9 7 3 5] 



Example - Haar Wavelets (cont’d) 

•  Repeating this process on the averages (i.e., low 
resolution image) gives the full decomposition: 

 
 
 
 
 

1 

Haar decomposition:  



Example - Haar Wavelets (cont’d) 

•  The original image can be reconstructed by adding or 
subtracting the detail coefficients from the lower-
resolution representations. 

 

2 1 -1 
[6] 

L0 D1 D2 D3 



Example - Haar Wavelets (cont’d) 

Detail coefficients 
become smaller and 
smaller scale decreases. 

Dj 

Dj-1 

D1 L0 

How should we 
compute the detail 
coefficients Dj ? 



Multiresolution Conditions 
•  If a set of functions V can be represented by a weighted 

sum of ψ(2jt - k), then a larger set, including V, can be 
represented by a weighted sum of ψ(2j+1t - k). 

low  
resolution 

high  
resolution 

j 
ψ(2jt - k)  

ψ(2j+1t - k) 



Multiresolution Conditions (cont’d) 

                 Vj: span of ψ(2jt - k):  ( ) ( )j k jk
k

f t a tψ=∑

                 Vj+1: span of ψ(2j+1t - k):  1 ( 1)( ) ( )j k j k
k

f t b tψ+ +=∑

1j jV V +⊆



ψ(t - k)  

ψ(2t - k)  

ψ(2jt - k)  

… 

V0 

V1 

Vj 

if f(t) ϵ V j then f(t) ϵ V j+1 

1j jV V +⊂

j=0 
 
 
j=1 
 
 
 
j 

Nested Spaces 

Multiresolution Conditions (cont’d) 



   How to compute Dj ?  

Define a set of basis functions 
that span the difference 
between Vj+1 and Vj 

IDEA: 



•   Let Wj be the orthogonal complement  of Vj in Vj+1 

Vj+1 = Vj + Wj 

   How to compute Dj ? (cont’d) 



How to compute Dj ? (cont’d) 
If f(t) ϵ Vj+1, then f(t)  can be represented using basis 
functions  φ(t)  from Vj+1: 

1( ) (2 )j
k

k
f t c t kϕ += −∑

( ) (2 ) (2 )j j
k jk

k k
f t c t k d t kϕ ψ= − + −∑ ∑

Vj+1 = Vj + Wj 

Alternatively, f(t) can be represented using two sets of basis  
functions, φ(t)  from Vj and ψ(t)  from Wj: 

Vj+1 



Think of  Wj as a means to represent the parts of a function 
in Vj+1 that cannot be represented in Vj 

1( ) (2 )j
k

k
f t c t kϕ += −∑

( ) (2 ) (2 )j j
k jk

k k
f t c t k d t kϕ ψ= − + −∑ ∑

Vj                                  Wj 

How to compute Dj ? (cont’d) 

differences 
between 
Vj and Vj+1 

Vj+1  



How to compute Dj ? (cont’d) 
•                               à using recursion on Vj:       

( ) ( ) (2 )j
k jk

k k j
f t c t k d t kϕ ψ= − + −∑ ∑∑

V0                    W0, W1, W2, … 
basis functions       basis functions 

Vj+1 = Vj-1+Wj-1+Wj = …= V0 + W0 + W1 + W2 + … + Wj 

if f(t) ϵ Vj+1 , then: 

Vj+1 = Vj + Wj 



Summary: wavelet expansion (Section 7.2) 

•  Wavelet decompositions involve  a pair of waveforms:   

 φ(t)               ψ(t) encodes low 
resolution info 

encodes details or 
high  resolution info 

( ) ( ) (2 )j
k jk

k k j
f t c t k d t kϕ ψ= − + −∑ ∑∑

scaling function          wavelet function Terminology: 



1D Haar Wavelets  

•  Haar  scaling and wavelet functions: 

computes average 
      (low pass) 

computes details 
     (high pass) 

φ(t)                     ψ(t) 



Let’s consider the spaces corresponding to  
different resolution 1D images: 

1D Haar Wavelets  (cont’d) 

etc. 

. 

.. 
…. 

1-pixel 

2-pixel 

4-pixel 

(j=0) 

(j=1) 

(j=2) 

V0 

V1 

V2 



1D Haar Wavelets (cont’d)  

•  V0  represents the space of 1-pixel (20-pixel) images 

•  Think of a 1-pixel image as a function that is constant 
over [0,1)  

 
 

Example: 
0                                                1 

width: 1 

j=0 



1D Haar Wavelets (cont’d)  

•  V1 represents the space of all 2-pixel (21-pixel) images  
•  Think of a 2-pixel image as a function having 21 equal-

sized constant pieces over the interval [0, 1). 

 

Example: 0                ½              1 

0 1V V⊂

= + 

width: 1/2 

e.g., 

j=1 

Note that:  



1D Haar Wavelets (cont’d) 
•  V j  represents all the 2j-pixel images 
•  Functions having 2j equal-sized constant pieces over 

interval [0,1). 

   Vj-1 

Example: width: 1/2j 

ϵ Vj ϵ Vj 

Note that:  

width: 1/2j-1 width: 1/2 

V1 



1D Haar Wavelets (cont’d) 

V0, V1, ..., Vj  are nested 

i.e.,  

Vj 
… 
 
V1 
V0 coarse info 

fine details 

1j jV V +⊂



Define a basis for Vj 

•  Scaling function: 

 
•  Let’s define a basis for V j  : 

Note new notation: ( ) ( )j
i jix xϕ ϕ≡



Define a basis for Vj (cont’d) 

width: 1/20 width: 1/2 width: 1/22 width: 1/23 



Define a basis for Wj  

•  Wavelet function: 

•  Let’s define a basis ψ ji  for Wj : 

( ) ( )j
i jix xψ ψ≡Note new notation: 



Define basis for Wj (cont’d) 

Note 
that the dot 
product 
between basis 
functions in Vj 
and Wj is zero! 



Basis for Vj+1 

Basis functions ψ ji of W j  
Basis functions φ ji of V j 

form a basis in V j+1 



Define a basis for Wj (cont’d) 

V3 = V2 + W2 



Define a basis for Wj (cont’d) 

V2 = V1 + W1 



Define a basis for Wj (cont’d) 

V1 = V0 + W0 



Example - Revisited 

f(x)= 

V2 



φ2,0(x) 

φ2,1(x) 

φ2,2(x) 

φ2,3(x) 

Example (cont’d) 

V2 

f(x)= 



Example (cont’d) 

V1 and W1 

V2=V1+W1 

φ1,0(x) 

φ1,1(x) 

ψ1,0(x) 

ψ1,1(x) 

(divide by 2 for normalization) 



Example (cont’d) 



Example (cont’d) 

V2=V1+W1=V0+W0+W1 

V0 ,W0 and W1 

φ0,0(x) 
ψ0,0(x) 

ψ1,0 (x) 

ψ1,1(x) 

(divide by 2 for normalization) 



Example 



Example (cont’d) 



Summary 

•  Structure extraction  
–  If the coefficient dj,k is large, then this means that there is 

some oscillatory variation in f(x). 

•  Localization in time 
•  Efficiency  

–  Execution times compared with FT. 
–  Good recover of discountinuities and corners. 
–   A few amount of terms are needed to approximate. 
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•  Thanks for your attention… 


